⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 integer.cpp

📁 300种加密解密的算法源代码
💻 CPP
📖 第 1 页 / 共 4 页
字号:
		default:
			SetWords(T0, 0, N);
			carry = 0;
		}

		RecursiveMultiply(T2, R0, A1, B1, N2);

		// now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1

		CopyWords(R0, L+N2, N2);
		word c2 = Subtract(R0, R0, L, N2);
		c2 += Subtract(R0, R0, T0, N2);
		word t = (Compare(R0, T2, N2) == -1);

		carry += t;
		carry += Increment(R0, N2, c2+t);
		carry += Add(R0, R0, T1, N2);
		carry += Add(R0, R0, T3, N2);

		CopyWords(R1, T3, N2);
		assert (carry >= 0 && carry <= 2);
		Increment(R1, N2, carry);
	}
}

// R[NA+NB] - result = A*B
// T[NA+NB] - temporary work space
// A[NA] ---- multiplier
// B[NB] ---- multiplicant

void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
{
	if (NA == NB)
	{
		if (A == B)
			RecursiveSquare(R, T, A, NA);
		else
			RecursiveMultiply(R, T, A, B, NA);

		return;
	}

	if (NA > NB)
	{
		std::swap(A, B);
		std::swap(NA, NB);
	}

	assert(NB % NA == 0);
	assert((NB/NA)%2 == 0);		// NB is an even multiple of NA

	if (NA==2 && !A[1])
	{
		switch (A[0])
		{
		case 0:
			SetWords(R, 0, NB+2);
			return;
		case 1:
			CopyWords(R, B, NB);
			R[NB] = R[NB+1] = 0;
			return;
		default:
			R[NB] = LinearMultiply(R, B, A[0], NB);
			R[NB+1] = 0;
			return;
		}
	}

	RecursiveMultiply(R, T, A, B, NA);
	CopyWords(T+2*NA, R+NA, NA);

	unsigned i;

	for (i=2*NA; i<NB; i+=2*NA)
		RecursiveMultiply(T+NA+i, T, A, B+i, NA);
	for (i=NA; i<NB; i+=2*NA)
		RecursiveMultiply(R+i, T, A, B+i, NA);

	if (Add(R+NA, R+NA, T+2*NA, NB-NA))
		Increment(R+NB, NA);
}

// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
// T[3*N/2] - temporary work space
// A[N] ----- an odd number as input

void RecursiveInverseModPower2(word *R, word *T, const word *A, unsigned int N)
{
	if (N==2)
		AtomicInverseModPower2(R, A[0], A[1]);
	else
	{
		const unsigned int N2 = N/2;
		RecursiveInverseModPower2(R0, T0, A0, N2);
		T0[0] = 1;
		SetWords(T0+1, 0, N2-1);
		RecursiveMultiplyTop(R1, T1, T0, R0, A0, N2);
		RecursiveMultiplyBottom(T0, T1, R0, A1, N2);
		Add(T0, R1, T0, N2);
		TwosComplement(T0, N2);
		RecursiveMultiplyBottom(R1, T1, R0, T0, N2);
	}
}

// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
// T[3*N] - temporary work space
// X[2*N] - number to be reduced
// M[N] --- modulus
// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)

void MontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, unsigned int N)
{
	RecursiveMultiplyBottom(R, T, X, U, N);
	RecursiveMultiplyTop(T, T+N, X, R, M, N);
	if (Subtract(R, X+N, T, N))
	{
		word carry = Add(R, R, M, N);
		assert(carry);
	}
}

// R[N] --- result = X/(2**(WORD_BITS*N/2)) mod M
// T[2*N] - temporary work space
// X[2*N] - number to be reduced
// M[N] --- modulus
// U[N/2] - multiplicative inverse of M mod 2**(WORD_BITS*N/2)
// V[N] --- 2**(WORD_BITS*3*N/2) mod M

void HalfMontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, const word *V, unsigned int N)
{
	assert(N%2==0 && N>=4);

#define M0		M
#define M1		(M+N2)
#define V0		V
#define V1		(V+N2)

#define X0		X
#define X1		(X+N2)
#define X2		(X+N)
#define X3		(X+N+N2)

	const unsigned int N2 = N/2;
	RecursiveMultiply(T0, T2, V0, X3, N2);
	int c2 = Add(T0, T0, X0, N);
	RecursiveMultiplyBottom(T3, T2, T0, U, N2);
	RecursiveMultiplyTop(T2, R, T0, T3, M0, N2);
	c2 -= Subtract(T2, T1, T2, N2);
	RecursiveMultiply(T0, R, T3, M1, N2);
	c2 -= Subtract(T0, T2, T0, N2);
	int c3 = -(int)Subtract(T1, X2, T1, N2);
	RecursiveMultiply(R0, T2, V1, X3, N2);
	c3 += Add(R, R, T, N);

	if (c2>0)
		c3 += Increment(R1, N2);
	else if (c2<0)
		c3 -= Decrement(R1, N2, -c2);

	assert(c3>=-1 && c3<=1);
	if (c3>0)
		Subtract(R, R, M, N);
	else if (c3<0)
		Add(R, R, M, N);

#undef M0
#undef M1
#undef V0
#undef V1

#undef X0
#undef X1
#undef X2
#undef X3
}

#undef A0
#undef A1
#undef B0
#undef B1

#undef T0
#undef T1
#undef T2
#undef T3

#undef R0
#undef R1
#undef R2
#undef R3

// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
static word SubatomicDivide(word *A, word B0, word B1)
{
	// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
	assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));

	dword p, u;
	word Q;

	// estimate the quotient: do a 2 word by 1 word divide
	if (B1+1 == 0)
		Q = A[2];
	else
		Q = word(MAKE_DWORD(A[1], A[2]) / (B1+1));

	// now subtract Q*B from A
	p = (dword) B0*Q;
	u = (dword) A[0] - LOW_WORD(p);
	A[0] = LOW_WORD(u);
	u = (dword) A[1] - HIGH_WORD(p) - (word)(0-HIGH_WORD(u)) - (dword)B1*Q;
	A[1] = LOW_WORD(u);
	A[2] += HIGH_WORD(u);

	// Q <= actual quotient, so fix it
	while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
	{
		u = (dword) A[0] - B0;
		A[0] = LOW_WORD(u);
		u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u));
		A[1] = LOW_WORD(u);
		A[2] += HIGH_WORD(u);
		Q++;
		assert(Q);  // shouldn't overflow
	}

	return Q;
}

// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
static inline void AtomicDivide(word &Q0, word &Q1, const word *A, word B0, word B1)
{
	if (!B0 && !B1) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
	{
		Q0 = A[2];
		Q1 = A[3];
	}
	else
	{
		word T[4];
		T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
		Q1 = SubatomicDivide(T+1, B0, B1);
		Q0 = SubatomicDivide(T, B0, B1);

#ifndef NDEBUG
		// multiply quotient and divisor and add remainder, make sure it equals dividend
		assert(!T[2] && !T[3] && (T[1] < B1 || (T[1]==B1 && T[0]<B0)));
		word P[4];
		AtomicMultiply(P, Q0, Q1, B0, B1);
		Add(P, P, T, 4);
		assert(memcmp(P, A, 4*WORD_SIZE)==0);
#endif
	}
}

// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
static void CorrectQuotientEstimate(word *R, word *T, word &Q0, word &Q1, const word *B, unsigned int N)
{
	assert(N && N%2==0);

	if (Q1)
	{
		T[N] = T[N+1] = 0;
		unsigned i;
		for (i=0; i<N; i+=4)
			AtomicMultiply(T+i, Q0, Q1, B[i], B[i+1]);
		for (i=2; i<N; i+=4)
			if (AtomicMultiplyAdd(T+i, Q0, Q1, B[i], B[i+1]))
				T[i+5] += (++T[i+4]==0);
	}
	else
	{
		T[N] = LinearMultiply(T, B, Q0, N);
		T[N+1] = 0;
	}

	word borrow = Subtract(R, R, T, N+2);
	assert(!borrow && !R[N+1]);

	while (R[N] || Compare(R, B, N) >= 0)
	{
		R[N] -= Subtract(R, R, B, N);
		Q1 += (++Q0==0);
		assert(Q0 || Q1); // no overflow
	}
}

// R[NB] -------- remainder = A%B
// Q[NA-NB+2] --- quotient  = A/B
// T[NA+2*NB+4] - temp work space
// A[NA] -------- dividend
// B[NB] -------- divisor

void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
{
	assert(NA && NB && NA%2==0 && NB%2==0);
	assert(B[NB-1] || B[NB-2]);
	assert(NB <= NA);

	// set up temporary work space
	word *const TA=T;
	word *const TB=T+NA+2;
	word *const TP=T+NA+2+NB;

	// copy B into TB and normalize it so that TB has highest bit set to 1
	unsigned shiftWords = (B[NB-1]==0);
	TB[0] = TB[NB-1] = 0;
	CopyWords(TB+shiftWords, B, NB-shiftWords);
	unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
	assert(shiftBits < WORD_BITS);
	ShiftWordsLeftByBits(TB, NB, shiftBits);

	// copy A into TA and normalize it
	TA[0] = TA[NA] = TA[NA+1] = 0;
	CopyWords(TA+shiftWords, A, NA);
	ShiftWordsLeftByBits(TA, NA+2, shiftBits);

	if (TA[NA+1]==0 && TA[NA] <= 1)
	{
		Q[NA-NB+1] = Q[NA-NB] = 0;
		while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
		{
			TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
			++Q[NA-NB];
		}
	}
	else
	{
		NA+=2;
		assert(Compare(TA+NA-NB, TB, NB) < 0);
	}

	word B0 = TB[NB-2] + 1;
	word B1 = TB[NB-1] + (B0==0);

	// start reducing TA mod TB, 2 words at a time
	for (unsigned i=NA-2; i>=NB; i-=2)
	{
		AtomicDivide(Q[i-NB], Q[i-NB+1], TA+i-2, B0, B1);
		CorrectQuotientEstimate(TA+i-NB, TP, Q[i-NB], Q[i-NB+1], TB, NB);
	}

	// copy TA into R, and denormalize it
	CopyWords(R, TA+shiftWords, NB);
	ShiftWordsRightByBits(R, NB, shiftBits);
}

static inline unsigned int EvenWordCount(const word *X, unsigned int N)
{
	while (N && X[N-2]==0 && X[N-1]==0)
		N-=2;
	return N;
}

// return k
// R[N] --- result = A^(-1) * 2^k mod M
// T[4*N] - temporary work space
// A[NA] -- number to take inverse of
// M[N] --- modulus

unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N)
{
	assert(NA<=N && N && N%2==0);

	word *b = T;
	word *c = T+N;
	word *f = T+2*N;
	word *g = T+3*N;
	unsigned int bcLen=2, fgLen=EvenWordCount(M, N);
	unsigned int k=0, s=0;

	SetWords(T, 0, 3*N);
	b[0]=1;
	CopyWords(f, A, NA);
	CopyWords(g, M, N);

	while (1)
	{
		word t=f[0];
		while (!t)
		{
			if (EvenWordCount(f, fgLen)==0)
			{
				SetWords(R, 0, N);
				return 0;
			}

			ShiftWordsRightByWords(f, fgLen, 1);
			if (c[bcLen-1]) bcLen+=2;
			assert(bcLen <= N);
			ShiftWordsLeftByWords(c, bcLen, 1);
			k+=WORD_BITS;
			t=f[0];
		}

		unsigned int i=0;
		while (t%2 == 0)
		{
			t>>=1;
			i++;
		}
		k+=i;

		if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
		{
			if (s%2==0)
				CopyWords(R, b, N);
			else
				Subtract(R, M, b, N);
			return k;
		}

		ShiftWordsRightByBits(f, fgLen, i);
		t=ShiftWordsLeftByBits(c, bcLen, i);
		if (t)
		{
			c[bcLen] = t;
			bcLen+=2;
			assert(bcLen <= N);
		}

		if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
			fgLen-=2;

		if (Compare(f, g, fgLen)==-1)
		{
			std::swap(f, g);
			std::swap(b, c);
			s++;
		}

		Subtract(f, f, g, fgLen);

		if (Add(b, b, c, bcLen))
		{
			b[bcLen] = 1;
			bcLen+=2;
			assert(bcLen <= N);
		}
	}
}

// R[N] - result = A/(2^k) mod M
// A[N] - input
// M[N] - modulus

void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
{
	CopyWords(R, A, N);

	while (k--)
	{
		if (R[0]%2==0)
			ShiftWordsRightByBits(R, N, 1);
		else
		{
			word carry = Add(R, R, M, N);
			ShiftWordsRightByBits(R, N, 1);
			R[N-1] += carry<<(WORD_BITS-1);
		}
	}
}

// R[N] - result = A*(2^k) mod M
// A[N] - input
// M[N] - modulus

void MultiplyByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
{
	CopyWords(R, A, N);

	while (k--)
		if (ShiftWordsLeftByBits(R, N, 1) || Compare(R, M, N)>=0)
			Subtract(R, R, M, N);
}

// ******************************************************************

static const unsigned int RoundupSizeTable[] = {2, 2, 2, 4, 4, 8, 8, 8, 8};

static inline unsigned int RoundupSize(unsigned int n)
{
	if (n<=8)
		return RoundupSizeTable[n];
	else if (n<=16)
		return 16;
	else if (n<=32)
		return 32;
	else if (n<=64)
		return 64;
	else return 1U << BitPrecision(n-1);
}

Integer::Integer()
	: reg(2), sign(POSITIVE)
{
	reg[0] = reg[1] = 0;
}

Integer::Integer(const Integer& t)
	: reg(RoundupSize(t.WordCount())), sign(t.sign)
{
	CopyWords(reg, t.reg, reg.size);
}

Integer::Integer(signed long value)
	: reg(2)
{
	if (value >= 0)
		sign = POSITIVE;
	else
	{
		sign = NEGATIVE;
		value = -value;
	}
	reg[0] = word(value);
	reg[1] = sizeof(value)>WORD_SIZE ? word(value>>WORD_BITS) : 0;
}

signed long Integer::ConvertToLong() const
{
	unsigned long value = reg[0];
	value += sizeof(value)>WORD_SIZE ? ((unsigned long)reg[1]<<WORD_BITS) : 0;
	return sign==POSITIVE ? value : -long(value);
}

Integer::Integer(const byte *encodedInteger, unsigned int byteCount, Signedness s)
{
	Decode(encodedInteger, byteCount, s);
}

Integer::Integer(const byte *BEREncodedInteger)
{
	BERDecode(BEREncodedInteger);
}

Integer::Integer(BufferedTransformation &bt)
{
	BERDecode(bt);
}

Integer::Integer(RandomNumberGenerator &rng, unsigned int bitcount)
{
	Randomize(rng, bitcount);
}

Integer::Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
{
	if (!Randomize(rng, min, max, rnType, equiv, mod))
		throw Integer::RandomNumberNotFound();
}

Integer Integer::Power2(unsigned int e)
{
	Integer r((word)0, bitsToWords(e+1)); 
	r.SetBit(e); 
	return r;
}

const Integer &Integer::Zero()
{
	static const Integer zero;
	return zero;
}

const Integer &Integer::One()
{
	static const Integer one(1,2);
	return one;
}

bool Integer::operator!() const
{
	return IsNegative() ? false : (reg[0]==0 && WordCount()==0);
}

Integer& Integer::operator=(const Integer& t)
{
	if (this != &t)
	{
		reg.New(RoundupSize(t.WordCount()));
		CopyWords(reg, t.reg, reg.size);
		sign = t.sign;
	}
	return *this;
}

bool Integer::GetBit(unsigned int n) const
{
	if (n/WORD_BITS >= reg.size)
		return 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -