⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 integer.cpp

📁 300种加密解密的算法源代码
💻 CPP
📖 第 1 页 / 共 4 页
字号:
// integer.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "integer.h"
#include "modarith.h"
#include "nbtheory.h"
#include "asn.h"
#include "words.h"

#include <iostream>

#include "algebra.cpp"
#include "eprecomp.cpp"

NAMESPACE_BEGIN(CryptoPP)

#define MAKE_DWORD(lowWord, highWord) ((dword(highWord)<<WORD_BITS) | (lowWord))

#if defined(_MSC_VER) && defined(_M_IX86) && (_M_IX86<=500)

// Add() and Subtract() are coded in Pentium assembly for a speed increase
// of about 10-20 percent for a RSA signature

static __declspec(naked) word __fastcall Add(word *C, const word *A, const word *B, unsigned int N)
{
	__asm
	{
		push ebp
		push ebx
		push esi
		push edi

		mov esi, [esp+24]
		mov ebx, [esp+20]

		sub ecx, edx
		xor eax, eax

		sub eax, esi
		lea ebx, [ebx+4*esi]

		sar eax, 1		// clears the carry flag
		jz  loopend

loopstart:
		mov    esi,[edx]
		mov    ebp,[edx+4]

		mov    edi,[ebx+8*eax]
		lea    edx,[edx+8]

		adc    esi,edi
		mov    edi,[ebx+8*eax+4]

		adc    ebp,edi
		inc    eax

		mov    [edx+ecx-8],esi
		mov    [edx+ecx-4],ebp

		jnz    loopstart

loopend:
		adc eax, 0
		pop edi
		pop esi
		pop ebx
		pop ebp
		ret 8
	}
}

static __declspec(naked) word __fastcall Subtract(word *C, const word *A, const word *B, unsigned int N)
{
	__asm
	{
		push ebp
		push ebx
		push esi
		push edi

		mov esi, [esp+24]
		mov ebx, [esp+20]

		sub ecx, edx
		xor eax, eax

		sub eax, esi
		lea ebx, [ebx+4*esi]

		sar eax, 1		// clears the carry flag
		jz  loopend

loopstart:
		mov    esi,[edx]
		mov    ebp,[edx+4]

		mov    edi,[ebx+8*eax]
		lea    edx,[edx+8]

		sbb    esi,edi
		mov    edi,[ebx+8*eax+4]

		sbb    ebp,edi
		inc    eax

		mov    [edx+ecx-8],esi
		mov    [edx+ecx-4],ebp

		jnz    loopstart

loopend:
		adc eax, 0
		pop edi
		pop esi
		pop ebx
		pop ebp
		ret 8
	}
}

#else	// defined(_MSC_VER) && defined(_M_IX86) && (_M_IX86<=500)

static word Add(word *C, const word *A, const word *B, unsigned int N)
{
	assert (N%2 == 0);

	word carry=0;
	for (unsigned i = 0; i < N; i+=2)
	{
		dword u = (dword) carry + A[i] + B[i];
		C[i] = LOW_WORD(u);
		u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1];
		C[i+1] = LOW_WORD(u);
		carry = HIGH_WORD(u);
	}
	return carry;
}

static word Subtract(word *C, const word *A, const word *B, unsigned int N)
{
	assert (N%2 == 0);

	word borrow=0;
	for (unsigned i = 0; i < N; i+=2)
	{
		dword u = (dword) A[i] - B[i] - borrow;
		C[i] = LOW_WORD(u);
		u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u));
		C[i+1] = LOW_WORD(u);
		borrow = 0-HIGH_WORD(u);
	}
	return borrow;
}

#endif	// defined(_MSC_VER) && defined(_M_IX86) && (_M_IX86<=500)

static int Compare(const word *A, const word *B, unsigned int N)
{
	while (N--)
		if (A[N] > B[N])
			return 1;
		else if (A[N] < B[N])
			return -1;

	return 0;
}

static word Increment(word *A, unsigned int N, word B=1)
{
	assert(N);
	word t = A[0];
	A[0] = t+B;
	if (A[0] >= t)
		return 0;
	for (unsigned i=1; i<N; i++)
		if (++A[i])
			return 0;
	return 1;
}

static word Decrement(word *A, unsigned int N, word B=1)
{
	assert(N);
	word t = A[0];
	A[0] = t-B;
	if (A[0] <= t)
		return 0;
	for (unsigned i=1; i<N; i++)
		if (A[i]--)
			return 0;
	return 1;
}

static void TwosComplement(word *A, unsigned int N)
{
	Decrement(A, N);
	for (unsigned i=0; i<N; i++)
		A[i] = ~A[i];
}

static word LinearMultiply(word *C, const word *A, word B, unsigned int N)
{
	word carry=0;
	for(unsigned i=0; i<N; i++)
	{
		dword p = (dword)A[i] * B + carry;
		C[i] = LOW_WORD(p);
		carry = HIGH_WORD(p);
	}
	return carry;
}

static void AtomicMultiply(word *C, word A0, word A1, word B0, word B1)
{
	word s;
	dword d;

	if (A1 >= A0)
		if (B0 >= B1)
		{
			s = 0;
			d = (dword)(A1-A0)*(B0-B1);
		}
		else
		{
			s = (A1-A0);
			d = (dword)s*(word)(B0-B1);
		}
	else
		if (B0 > B1)
		{
			s = (B0-B1);
			d = (word)(A1-A0)*(dword)s;
		}
		else
		{
			s = 0;
			d = (dword)(A0-A1)*(B1-B0);
		}

	dword A0B0 = (dword)A0*B0;
	C[0] = LOW_WORD(A0B0);

	dword A1B1 = (dword)A1*B1;
	dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1);
	C[1] = LOW_WORD(t);

	t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s;
	C[2] = LOW_WORD(t);
	C[3] = HIGH_WORD(t);
}

static word AtomicMultiplyAdd(word *C, word A0, word A1, word B0, word B1)
{
	word s;
	dword d;

	if (A1 >= A0)
		if (B0 >= B1)
		{
			s = 0;
			d = (dword)(A1-A0)*(B0-B1);
		}
		else
		{
			s = (A1-A0);
			d = (dword)s*(word)(B0-B1);
		}
	else
		if (B0 > B1)
		{
			s = (B0-B1);
			d = (word)(A1-A0)*(dword)s;
		}
		else
		{
			s = 0;
			d = (dword)(A0-A1)*(B1-B0);
		}

	dword A0B0 = (dword)A0*B0;
	dword t = A0B0 + C[0];
	C[0] = LOW_WORD(t);

	dword A1B1 = (dword)A1*B1;
	t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1];
	C[1] = LOW_WORD(t);

	t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2];
	C[2] = LOW_WORD(t);

	t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3];
	C[3] = LOW_WORD(t);
	return HIGH_WORD(t);
}

static inline void AtomicSquare(word *C, word A, word B)
{
	dword t1 = (dword) A*A;
	C[0] = LOW_WORD(t1);

	dword t2 = (dword) A*B;
	t1 = (dword) HIGH_WORD(t1) + LOW_WORD(t2) + LOW_WORD(t2);
	C[1] = LOW_WORD(t1);

	t1 = (dword) B*B + HIGH_WORD(t1) + HIGH_WORD(t2) + HIGH_WORD(t2);
	C[2] = LOW_WORD(t1);
	C[3] = HIGH_WORD(t1);
}

static inline void AtomicMultiplyBottom(word *C, word A0, word A1, word B0, word B1)
{
	dword t = (dword)A0*B0;
	C[0] = LOW_WORD(t);
	C[1] = HIGH_WORD(t) + A0*B1 + A1*B0;
}

static inline void AtomicMultiplyBottomAdd(word *C, word A0, word A1, word B0, word B1)
{
	dword t = (dword)A0*B0 + C[0];
	C[0] = LOW_WORD(t);
	C[1] += HIGH_WORD(t) + A0*B1 + A1*B0;
}

static void CombaMultiply(word *R, const word *A, const word *B)
{
	dword p;
	word c=0, d=0, e=0;

#define MulAcc(x, y)								\
	p = (dword)A[x] * B[y] + c;						\
	c = LOW_WORD(p);								\
	p = (dword)d + HIGH_WORD(p);					\
	d = LOW_WORD(p);								\
	e += HIGH_WORD(p);

#define SaveMulAcc(s, x, y)							\
	R[s] = c;										\
	p = (dword)A[x] * B[y] + d;						\
	c = LOW_WORD(p);								\
	p = (dword)e + HIGH_WORD(p);					\
	d = LOW_WORD(p);								\
	e = HIGH_WORD(p);

	p = (dword)A[0] * B[0];
	R[0] = LOW_WORD(p);
	c = HIGH_WORD(p);
	d = e = 0;

	MulAcc(0, 1);
	MulAcc(1, 0);

	SaveMulAcc(1, 2, 0);
	MulAcc(1, 1);
	MulAcc(0, 2);

	SaveMulAcc(2, 0, 3);
	MulAcc(1, 2);
	MulAcc(2, 1);
	MulAcc(3, 0);

	SaveMulAcc(3, 3, 1);
	MulAcc(2, 2);
	MulAcc(1, 3);

	SaveMulAcc(4, 2, 3);
	MulAcc(3, 2);

	R[5] = c;
	p = (dword)A[3] * B[3] + d;
	R[6] = LOW_WORD(p);
	R[7] = e + HIGH_WORD(p);

#undef MulAcc
#undef SaveMulAcc
}

static void AtomicInverseModPower2(word *C, word A0, word A1)
{
	assert(A0%2==1);

	dword A=MAKE_DWORD(A0, A1), R=A0%8;

	for (unsigned i=3; i<2*WORD_BITS; i*=2)
		R = R*(2-R*A);

	assert(R*A==1);

	C[0] = LOW_WORD(R);
	C[1] = HIGH_WORD(R);
}

// ********************************************************

#define A0		A
#define A1		(A+N2)
#define B0		B
#define B1		(B+N2)

#define T0		T
#define T1		(T+N2)
#define T2		(T+N)
#define T3		(T+N+N2)

#define R0		R
#define R1		(R+N2)
#define R2		(R+N)
#define R3		(R+N+N2)

// R[2*N] - result = A*B
// T[2*N] - temporary work space
// A[N] --- multiplier
// B[N] --- multiplicant

void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N)
{
	assert(N>=2 && N%2==0);

	if (N==2)
		AtomicMultiply(R, A[0], A[1], B[0], B[1]);
	else if (N==4)
		CombaMultiply(R, A, B);
	else
	{
		const unsigned int N2 = N/2;
		int carry;

		int aComp = Compare(A0, A1, N2);
		int bComp = Compare(B0, B1, N2);

		switch (2*aComp + aComp + bComp)
		{
		case -4:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			Subtract(T1, T1, R0, N2);
			carry = -1;
			break;
		case -2:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			carry = 0;
			break;
		case 2:
			Subtract(R0, A0, A1, N2);
			Subtract(R1, B1, B0, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			carry = 0;
			break;
		case 4:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			Subtract(T1, T1, R1, N2);
			carry = -1;
			break;
		default:
			SetWords(T0, 0, N);
			carry = 0;
		}

		RecursiveMultiply(R0, T2, A0, B0, N2);
		RecursiveMultiply(R2, T2, A1, B1, N2);

		// now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1

		carry += Add(T0, T0, R0, N);
		carry += Add(T0, T0, R2, N);
		carry += Add(R1, R1, T0, N);

		assert (carry >= 0 && carry <= 2);
		Increment(R3, N2, carry);
	}
}

// R[2*N] - result = A*A
// T[2*N] - temporary work space
// A[N] --- number to be squared

void RecursiveSquare(word *R, word *T, const word *A, unsigned int N)
{
	assert(N && N%2==0);

	if (N==2)
		AtomicSquare(R, A[0], A[1]);
	else if (N==4)
	{
		AtomicSquare(R, A[0], A[1]);
		AtomicSquare(R+4, A[2], A[3]);
		AtomicMultiply(T, A[0], A[1], A[2], A[3]);
		word carry = Add(R+2, R+2, T, 4);
		carry += Add(R+2, R+2, T, 4);
		Increment(R+6, 2, carry);
	}
	else
	{
		const unsigned int N2 = N/2;

		RecursiveSquare(R0, T2, A0, N2);
		RecursiveSquare(R2, T2, A1, N2);
		RecursiveMultiply(T0, T2, A0, A1, N2);

		word carry = Add(R1, R1, T0, N);
		carry += Add(R1, R1, T0, N);
		Increment(R3, N2, carry);
	}
}

// R[N] - bottom half of A*B
// T[N] - temporary work space
// A[N] - multiplier
// B[N] - multiplicant

void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N)
{
	assert(N>=2 && N%2==0);

	if (N==2)
		AtomicMultiplyBottom(R, A[0], A[1], B[0], B[1]);
	else if (N==4)
	{
		AtomicMultiply(R, A[0], A[1], B[0], B[1]);
		AtomicMultiplyBottomAdd(R+2, A[0], A[1], B[2], B[3]);
		AtomicMultiplyBottomAdd(R+2, A[2], A[3], B[0], B[1]);
	}
	else
	{
		const unsigned int N2 = N/2;

		RecursiveMultiply(R, T, A0, B0, N2);
		RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
		Add(R1, R1, T0, N2);
		RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
		Add(R1, R1, T0, N2);
	}
}

// R[N] --- upper half of A*B
// T[2*N] - temporary work space
// L[N] --- lower half of A*B
// A[N] --- multiplier
// B[N] --- multiplicant

void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N)
{
	assert(N>=2 && N%2==0);

	if (N==2)
	{
		AtomicMultiply(T, A[0], A[1], B[0], B[1]);
		R[0] = T[2];
		R[1] = T[3];
	}
	else
	{
		const unsigned int N2 = N/2;
		int carry;

		int aComp = Compare(A0, A1, N2);
		int bComp = Compare(B0, B1, N2);

		switch (2*aComp + aComp + bComp)
		{
		case -4:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			Subtract(T1, T1, R0, N2);
			carry = -1;
			break;
		case -2:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			carry = 0;
			break;
		case 2:
			Subtract(R0, A0, A1, N2);
			Subtract(R1, B1, B0, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			carry = 0;
			break;
		case 4:
			Subtract(R0, A1, A0, N2);
			Subtract(R1, B0, B1, N2);
			RecursiveMultiply(T0, T2, R0, R1, N2);
			Subtract(T1, T1, R1, N2);
			carry = -1;
			break;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -