📄 demopsobehavior.m
字号:
% demopsobehavior.m
% demo of the pso.m function
% the pso tries to find the minimum of the f6 function, a standard
% benchmark
%
% on the plots, blue is current position, green is Pbest, and red is Gbest
% Brian Birge
% Rev 3.0
% 2/27/06
clear all
close all
clc
help demopsobehavior
warning off
functnames = {'ackley','alpine','DeJong_f2','DeJong_f3','DeJong_f4',...
'Foxhole','Griewank','NDparabola',...
'Rastrigin','Rosenbrock','f6','f6mod','tripod',...
'f6_bubbles_dyn','f6_linear_dyn','f6_spiral_dyn'};
disp('Static test functions, minima don''t change w.r.t. time/iteration:');
disp(' 1) Ackley');
disp(' 2) Alpine');
disp(' 3) DeJong_f2');
disp(' 4) DeJong_f3');
disp(' 5) DeJong_f4');
disp(' 6) Foxhole');
disp(' 7) Griewank');
disp(' 8) NDparabola (for this demo N = 2)');
disp(' 9) Rastrigin');
disp('10) Rosenbrock');
disp('11) Schaffer f6');
disp('12) Schaffer f6 modified (5 f6 functions translated from each other)');
disp('13) Tripod');
disp(' ');
disp('Dynamic test functions, minima/environment evolves over time/iteration:');
disp('14) f6_bubbles_dyn');
disp('15) f6_linear_dyn');
disp('16) f6_spiral_dyn');
functchc=input('Choose test function ? ');
functname = functnames{functchc};
disp(' ');
disp('1) Intense graphics, shows error topology and surfing particles');
disp('2) Default PSO graphing, shows error trend and particle dynamics');
disp('3) no plot, only final output shown, fastest');
plotfcn=input('Choose plotting function ? ');
if plotfcn == 1
plotfcn = 'goplotpso4demo';
shw = 1; % how often to update display
elseif plotfcn == 2
plotfcn = 'goplotpso';
shw = 1; % how often to update display
else
plotfcn = 'goplotpso';
shw = 0; % how often to update display
end
% set flag for 'dynamic function on', only used at very end for tracking plots
dyn_on = 0;
if functchc==15 | functchc == 16 | functchc == 17
dyn_on = 1;
end
%xrng=input('Input search range for X, e.g. [-10,10] ? ');
%yrng=input('Input search range for Y ? ');
xrng=[-30,30];
yrng=[-40,40];
disp(' ');
% if =0 then we look for minimum, =1 then max
disp('0) Minimize')
disp('1) Maximize')
minmax=input('Choose search goal ?');
% minmax=0;
disp(' ');
mvden = input('Max velocity divisor (2 is a good choice) ? ');
disp(' ');
ps = input('How many particles (24 - 30 is common)? ');
disp(' ');
disp('0) Common PSO - with inertia');
disp('1) Trelea model 1');
disp('2) Trelea model 2');
disp('3) Clerc Type 1" - with constriction');
modl = input('Choose PSO model ? ');
% note: if errgoal=NaN then unconstrained min or max is performed
if minmax==1
% errgoal=0.97643183; % max for f6 function (close enough for termination)
errgoal=NaN;
else
% errgoal=0; % min
errgoal=NaN;
end
minx = xrng(1);
maxx = xrng(2);
miny = yrng(1);
maxy = yrng(2);
%--------------------------------------------------------------------------
dims=2;
varrange=[];
mv=[];
for i=1:dims
varrange=[varrange;minx maxx];
mv=[mv;(varrange(i,2)-varrange(i,1))/mvden];
end
ac = [2.1,2.1];% acceleration constants, only used for modl=0
Iwt = [0.9,0.6]; % intertia weights, only used for modl=0
epoch = 400; % max iterations
wt_end = 100; % iterations it takes to go from Iwt(1) to Iwt(2), only for modl=0
errgrad = 1e-99; % lowest error gradient tolerance
errgraditer=100; % max # of epochs without error change >= errgrad
PSOseed = 0; % if=1 then can input particle starting positions, if= 0 then all random
% starting particle positions (first 20 at zero, just for an example)
PSOseedValue = repmat([0],ps-10,1);
psoparams=...
[shw epoch ps ac(1) ac(2) Iwt(1) Iwt(2) ...
wt_end errgrad errgraditer errgoal modl PSOseed];
% run pso
% vectorized version
[pso_out,tr,te]=pso_Trelea_vectorized(functname, dims,...
mv, varrange, minmax, psoparams,plotfcn,PSOseedValue);
%--------------------------------------------------------------------------
% display best params, this only makes sense for static functions, for dynamic
% you'd want to see a time history of expected versus optimized global best
% values.
disp(' ');
disp(' ');
disp(['Best fit parameters: ']);
disp([' cost = ',functname,'( [ input1, input2 ] )']);
disp(['---------------------------------']);
disp([' input1 = ',num2str(pso_out(1))]);
disp([' input2 = ',num2str(pso_out(2))]);
disp([' cost = ',num2str(pso_out(3))]);
disp([' mean cost = ',num2str(mean(te))]);
disp([' # of epochs = ',num2str(tr(end))]);
%% optional, save picture
%set(gcf,'InvertHardcopy','off');
%print -dmeta
%print('-djpeg',['demoPSOBehavior.jpg']);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -