📄 statistics.java
字号:
for (int counter = 0; counter < data.length; counter++) {
double diff = data[counter] - avg;
sum = sum + diff * diff;
}
return Math.sqrt(sum / (data.length - 1));
}
public static double getStdDev(double[] data, double mean) {
double sum = 0.0;
for (int counter = 0; counter < data.length; counter++) {
double diff = data[counter] - mean;
sum = sum + diff * diff;
}
return Math.sqrt(sum / (data.length - 1));
}
/**
* Fits a straight line to a set of (x, y) data, returning the slope and
* intercept.
*
* @param xData the x-data.
* @param yData the y-data.
*
* @return A double array with the intercept in [0] and the slope in [1].
*/
public static double[] getLinearFit(Number[] xData, Number[] yData) {
// check arguments...
if (xData.length != yData.length) {
throw new IllegalArgumentException(
"Statistics.getLinearFit(): array lengths must be equal.");
}
double[] result = new double[2];
// slope
result[1] = getSlope(xData, yData);
// intercept
result[0] = calculateMean(yData) - result[1] * calculateMean(xData);
return result;
}
/**
* Finds the slope of a regression line using least squares.
*
* @param xData an array of Numbers (the x values).
* @param yData an array of Numbers (the y values).
*
* @return The slope.
*/
public static double getSlope(Number[] xData, Number[] yData) {
// check arguments...
if (xData.length != yData.length) {
throw new IllegalArgumentException("Array lengths must be equal.");
}
// ********* stat function for linear slope ********
// y = a + bx
// a = ybar - b * xbar
// sum(x * y) - (sum (x) * sum(y)) / n
// b = ------------------------------------
// sum (x^2) - sum(x)^2 / n
// *************************************************
// sum of x, x^2, x * y, y
double sx = 0.0, sxx = 0.0, sxy = 0.0, sy = 0.0;
int counter;
for (counter = 0; counter < xData.length; counter++) {
sx = sx + xData[counter].doubleValue();
sxx = sxx + Math.pow(xData[counter].doubleValue(), 2);
sxy = sxy + yData[counter].doubleValue()
* xData[counter].doubleValue();
sy = sy + yData[counter].doubleValue();
}
return (sxy - (sx * sy) / counter) / (sxx - (sx * sx) / counter);
}
/**
* Calculates the correlation between two datasets. Both arrays should
* contain the same number of items. Null values are treated as zero.
* <P>
* Information about the correlation calculation was obtained from:
*
* http://trochim.human.cornell.edu/kb/statcorr.htm
*
* @param data1 the first dataset.
* @param data2 the second dataset.
*
* @return The correlation.
*
*/
public static double getCorrelation(Number[] data1, Number[] data2) {
if (data1 == null) {
throw new IllegalArgumentException("Null 'data1' argument.");
}
if (data2 == null) {
throw new IllegalArgumentException("Null 'data2' argument.");
}
if (data1.length != data2.length) {
throw new IllegalArgumentException(
"'data1' and 'data2' arrays must have same length."
);
}
int n = data1.length;
double sumX = 0.0;
double sumY = 0.0;
double sumX2 = 0.0;
double sumY2 = 0.0;
double sumXY = 0.0;
for (int i = 0; i < n; i++) {
double x = 0.0;
if (data1[i] != null) {
x = data1[i].doubleValue();
}
double y = 0.0;
if (data2[i] != null) {
y = data2[i].doubleValue();
}
sumX = sumX + x;
sumY = sumY + y;
sumXY = sumXY + (x * y);
sumX2 = sumX2 + (x * x);
sumY2 = sumY2 + (y * y);
}
return (n * sumXY - sumX * sumY) / Math.pow((n * sumX2 - sumX * sumX)
* (n * sumY2 - sumY * sumY), 0.5);
}
/**
* Calculates the correlation between two datasets.
*
*@param data1 the first dataset.
* @param data2 the second dataset.
*
* @return The correlation.
zhangweian 2006/03/08
*/
public static double getCorrelation(double[] data1, double[] data2) {
if (data1 == null) {
throw new IllegalArgumentException("Null 'data1' argument.");
}
if (data2 == null) {
throw new IllegalArgumentException("Null 'data2' argument.");
}
if (data1.length != data2.length) {
throw new IllegalArgumentException(
"'data1' and 'data2' arrays must have same length."
);
}
int n = data1.length;
double sumX = 0.0;
double sumY = 0.0;
double sumX2 = 0.0;
double sumY2 = 0.0;
double sumXY = 0.0;
double x = 0.0;
double y = 0.0;
for (int i = 0; i < n; i++) {
x = data1[i];
y = data2[i];
sumX = sumX + x;
sumY = sumY + y;
sumXY = sumXY + (x * y);
sumX2 = sumX2 + (x * x);
sumY2 = sumY2 + (y * y);
}
return (n * sumXY - sumX * sumY) / Math.pow((n * sumX2 - sumX * sumX)
* (n * sumY2 - sumY * sumY), 0.5);
}
/**
* Returns a data set for a moving average on the data set passed in.
*
* @param xData an array of the x data.
* @param yData an array of the y data.
* @param period the number of data points to average
*
* @return A double[][] the length of the data set in the first dimension,
* with two doubles for x and y in the second dimension
*/
public static double[][] getMovingAverage(Number[] xData,
Number[] yData,
int period) {
// check arguments...
if (xData.length != yData.length) {
throw new IllegalArgumentException("Array lengths must be equal.");
}
if (period > xData.length) {
throw new IllegalArgumentException(
"Period can't be longer than dataset."
);
}
double[][] result = new double[xData.length - period][2];
for (int i = 0; i < result.length; i++) {
result[i][0] = xData[i + period].doubleValue();
// holds the moving average sum
double sum = 0.0;
for (int j = 0; j < period; j++) {
sum += yData[i + j].doubleValue();
}
sum = sum / period;
result[i][1] = sum;
}
return result;
}
/**
* Returns the square deviation of a set of numbers.
*
* @param data the data.
*
* @return The square deviation of a set of numbers.
* zhangweian 2006/03/08
*/
public static double getSquareDev(double[] data) {
double avg = calculateMean(data);
double sum = 0.0;
for (int counter = 0; counter < data.length; counter++) {
double diff = data[counter] - avg;
sum = sum + diff * diff;
}
return sum;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -