📄 uniformxover.sci
字号:
function [ch1,ch2,t] = uniformxover(par1,par2,bounds,Ops)
// Uniform crossover takes two parents P1,P2 and performs uniform
// crossover on a permuation string.
//
// function [c1,c2] = linearOrderXover(p1,p2,bounds,Ops)
// p1 - the first parent ( [solution string function value] )
// p2 - the second parent ( [solution string function value] )
// bounds - the bounds matrix for the solution space
// Ops - Options matrix for simple crossover [gen #SimpXovers].
// Binary and Real-Valued Simulation Evolution for Matlab
// Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay
//
// C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
// optimization: A Matlab implementation. ACM Transactions on Mathmatical
// Software, Submitted 1996.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 1, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details. A copy of the GNU
// General Public License can be obtained from the
// Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
sz = size(par1,2)-1;
ch1 = par1;
ch2 = par2;
t = round(rand(1,sz));
szt = sum(t);
idx = 1:sz;
idxt = idx(logical(t));
plst = idxt;
for i = 1:szt
plst(i) = find(par2 == par1(idxt(i)));
end
plst = gsort(plst,'g','i');
for i = 1:szt
ch1(idxt(i)) = par2(plst(i));
end
szt = sz - szt;
idxt = idx(~t);
plst = idxt;
for i = 1:szt
plst(i) = find(par1 == par2(idxt(i)));
end
plst = gsort(plst,'g','i');
for i = 1:szt
ch2(idxt(i)) = par1(plst(i));
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -