⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 39663

📁 神经网络昆斯林的新闻组分类2006
💻
字号:
Xref: cantaloupe.srv.cs.cmu.edu comp.sys.mac.programmer:59851 comp.graphics:39663Newsgroups: comp.sys.mac.programmer,comp.graphicsPath: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!noc.near.net!howland.reston.ans.net!usc!elroy.jpl.nasa.gov!decwrl!csus.edu!netcom.com!nagleFrom: nagle@netcom.com (John Nagle)Subject: Re: Point in Polygon routine neededMessage-ID: <nagleC76M2J.EE5@netcom.com>Organization: NETCOM On-line Communication Services (408 241-9760 guest)References: <8fxkxAO00WB7M=nOFO@andrew.cmu.edu>Date: Mon, 17 May 1993 17:32:43 GMTLines: 18Andrew Lewis Tepper <at15+@andrew.cmu.edu> writes:>I don't know if this routine is "standard", I just came up with it recently:>For a polygon of points p1...pn, and a point P, make a table as follows:>T(1)= angle from p1 to P to p2>T(2)= angle from p2 to P to p3>...>T(n)= angle from pn to P to p1>express all angles as: -PI < angle < PI.>Add all entries in the table. If the sum = 0, the point is outside. If>the sum is +/- PI, the point is inside. If the point is +/- xPI, you>have a strange polygon. If ANY angle was = +/-PI, the point is on the>border.     I think it's known, but it's neat.     Can it be extended to 3D?						John Nagle

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -