📄 38370
字号:
Newsgroups: comp.graphicsPath: cantaloupe.srv.cs.cmu.edu!crabapple.srv.cs.cmu.edu!fs7.ece.cmu.edu!europa.eng.gtefsd.com!gatech!darwin.sura.net!haven.umd.edu!uunet!news.smith.edu!orourkeFrom: orourke@sophia.smith.edu (Joseph O'Rourke)Subject: Re: Need a good concave -> convex polygon algorithmMessage-ID: <1993Apr17.005143.4846@sophia.smith.edu>Organization: Smith College, Northampton, MA, USReferences: <C5Juyz.ALy@murdoch.acc.Virginia.EDU>Date: Sat, 17 Apr 1993 00:51:43 GMTLines: 16In article <C5Juyz.ALy@murdoch.acc.Virginia.EDU> rws2v@uvacs.cs.Virginia.EDU (Richard Stoakley) writes:> We need a good concave ->convex polygon conversion routine.>I've tried a couple without much luck. Please E-mail responses and I>will post a summary of any replies. Thank you.>>Richard Stoakley>rws2v@uvacs.cs.Virginia.EDUThe problem is not precisely defined above, but if you need to findthe smallest convex polygon that encloses a given polygon, thenyou are seeking the convex hull of your original polygon. Thereare two ways to do this: use a somewhat tricky but by-now wellexamined linear-time algorithm that exploits the polygon boundary,or just feed the vertices of the original polygon to a convex hullroutine and accept O(n log n). Both methods are discussed inPreparata and Shamos, for example.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -