⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pt.m

📁 用matlab编的神经网络预测方面的界面
💻 M
字号:
p=[0.4942,0.75,0.5,0.4017,0.1601,0.9314,0.9314,0.3974,0.6654,0.1111;    0.4798,0.75,0.5,0.4017,0.1601,0.9375,0.9375,0.3974,0.6554,0.2222;    0.4817,0.75,0.5,0.4017,0.1601,0.9375,0.9375,0.9374,0.6554,0.4444;    0.5418,0.75,0.5,0.4017,0.1601,0.9036,0.9036,0.3974,0.4912,0.4444;    0.5416,0.75,0.5,0.4017,0.1601,0.9036,0.9036,0.3974,0.4912,0.7778;    0.4278,1,0.75,	0.405594406,0.092678869	,1	,1	,0.509286413,	0.855368421	,0;    0.689872091	1	0.75	0.405594406	0.277870216	0.982764236	0.982754439	0.509286413	0.855368421	0;    0.616481443	1	0.75	0.405594406	0.06156406	1	1	0.509286413	0.855368421	0;    0.643740826	1	0.75	0.811188811	0.277870216	1	1	0.509286413	0.855368421	0    0.705179283	0.75	0.75	0.965034965	0.183028286	0.828918083	0.881827884	0.614369501	0.699157895	0.555555556;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.785740274	0.614369501	0.699157895	0.555555556;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.81848501	0.614369501	0.699157895	0.555555556;     0.764940239	0.75	0.75	0.965034965	0.183028286	0.813148038	0.865055302	0.614369501	0.699157895	0.555555556;     0.705179283	0.75	0.75	0.965034965	0.183028286	0.828918083	0.881827884	0.614369501	0.699157895	0.777777778;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.785740274	0.614369501	0.699157895	0.777777778;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.81848501	0.614369501	0.699157895	0.777777778;     0.764940239	0.75	0.75	0.965034965	0.183028286	0.813148038	0.865055302	0.614369501	0.699157895	0.777777778;     0.705179283	0.75	0.75	0.965034965	0.183028286	0.828918083	0.881827884	0.614369501	0.699157895	1;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.785740274	0.614369501	0.699157895	1;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.81848501	0.614369501	0.699157895	1;     0.702033969	0.75	0.75	0.965034965	0.183028286	0.813148038	0.865055302	0.614369501	0.699157895	1;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.785740274	0.614369501	0.699157895	1.111111111;     1	0.75	0.75	0.965034965	0.183028286	0.769380055	0.81848501	0.614369501	0.699157895	1.111111111;     0.702033969	0.75	0.75	0.965034965	0.183028286	0.813148038	0.865055302	0.614369501	0.699157895	1.111111111;     0.555881736	0.75	0.75	0.426573427	0.183028286	0.868709625	0.924250509	0.614369501	0.699157895	0;     0.429859509	0.5	0.5	0.412587413	0.199667221	0.914187612	0.926421364	1	1	0;     0.429859509	0.5	0.5	0.412587413	0.399334443	0.914187612	0.926421364	1	1	0;     0.429859509	0.5	0.5	0.412587413	0.602329451	0.914187612	0.926421364	1	1	0;     0.429859509	0.5	0.5	0.412587413	1	0.914187612	0.926421364	1	1	0;     0.297756343	0.5	0.5	0.643356643	0.199667221	0.870623202	0.839017173	0.657869013	1	0;     0.297756343	0.5	0.5	0.643356643	0.399334443	0.870623202	0.839017173	0.657869013	1	0;     0.845040889	0.75	0.625	1	0.245923461	0.830058086	0.786261764	0.782013685	0.657894737	0;     0.654225204	1	1	0.444965035	0.18469218	0.827533793	0.972433783	0.631476051	0.643368421	0.333333333;     0.788425246	0.6	0.45	0.731678322	0.068219634	0.876920363	0.820946929	0.631476051	0.421052632	0;     0.788425246	0.6	0.45	0.731678322	0.10249584	0.876920363	0.820946929	0.631476051	0.421052632	0;     0.788425246	0.6	0.45	0.731678322	0.10249584	0.876920363	0.820946929	0.631476051	0.421052632	0.555555556;     0.788425246	0.6	0.45	0.731678322	0.204991681	0.876920363	0.820946929	0.631476051	0.421052632	0;     0.788425246	0.6	0.45	0.731678322	0.204991681	0.876920363	0.820946929	0.631476051	0.421052632	0.777777778] t=[0.133832335;0.137724551;0.134730539;0.125748503;0.144086826;0.449101796;0.616766467;0.422904192;0.844311377;0.95508982;0.909431138;0.97754491;0.863772455;0.863772455;1;0.97754491;0.932634731;0.95508982;0.932634731;0.909431138;0.97754491;0.97754491;0.931886228;0.909431138;0.5;0.155314371;0.177769461;0.188997006;0.254491018;0.164670659;0.202095808;0.628742515;0.799850299;0.168413174;0.174026946;0.25261976;0.249812874;0.308757485]%addpath d:\MATLAB6.5\toolbox\LS_SVMlab%type = 'function approximation';%kernel = 'RBF_kernel';%gam = 10;%sig2 = 0.2;%model = initlssvm(p,t,type,gam,sig2,kernel);%model = trainlssvm(model);%x=[0.450828266	0.9	0.65	0.384615385	0.070998336	0.950002714	0.848937615	0.384066471	0.662736842	0;%   0.450828266	0.9	0.65	0.384615385	0.141946755	0.950002714	0.848937615	0.384066471	0.662736842	0;%   0.450828266	0.9	0.65	0.384615385	0.212828619	0.950002714	0.848937615	0.384066471	0.662736842	0.222222222]%Yt = simlssvm(model,x)%[w1,b1,w2,b2]=initff(p',20,'logsig', 1,'logsig');%disp_fqre=1;max_epoch=20000;err_goal=0.01;lr=0.05;%tp=[disp_fqre  max_epoch  err_goal  lr];%[w1,b1,w2,b2,te,tr]=trainbp(w1,b1,'logsig',w2,b2,'logsig',p',t',tp);%a=simuff(x',w1,b1,'logsig',w2,b2,'logsig')

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -