📄 pt.m
字号:
p=[0.4942,0.75,0.5,0.4017,0.1601,0.9314,0.9314,0.3974,0.6654,0.1111; 0.4798,0.75,0.5,0.4017,0.1601,0.9375,0.9375,0.3974,0.6554,0.2222; 0.4817,0.75,0.5,0.4017,0.1601,0.9375,0.9375,0.9374,0.6554,0.4444; 0.5418,0.75,0.5,0.4017,0.1601,0.9036,0.9036,0.3974,0.4912,0.4444; 0.5416,0.75,0.5,0.4017,0.1601,0.9036,0.9036,0.3974,0.4912,0.7778; 0.4278,1,0.75, 0.405594406,0.092678869 ,1 ,1 ,0.509286413, 0.855368421 ,0; 0.689872091 1 0.75 0.405594406 0.277870216 0.982764236 0.982754439 0.509286413 0.855368421 0; 0.616481443 1 0.75 0.405594406 0.06156406 1 1 0.509286413 0.855368421 0; 0.643740826 1 0.75 0.811188811 0.277870216 1 1 0.509286413 0.855368421 0 0.705179283 0.75 0.75 0.965034965 0.183028286 0.828918083 0.881827884 0.614369501 0.699157895 0.555555556; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.785740274 0.614369501 0.699157895 0.555555556; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.81848501 0.614369501 0.699157895 0.555555556; 0.764940239 0.75 0.75 0.965034965 0.183028286 0.813148038 0.865055302 0.614369501 0.699157895 0.555555556; 0.705179283 0.75 0.75 0.965034965 0.183028286 0.828918083 0.881827884 0.614369501 0.699157895 0.777777778; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.785740274 0.614369501 0.699157895 0.777777778; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.81848501 0.614369501 0.699157895 0.777777778; 0.764940239 0.75 0.75 0.965034965 0.183028286 0.813148038 0.865055302 0.614369501 0.699157895 0.777777778; 0.705179283 0.75 0.75 0.965034965 0.183028286 0.828918083 0.881827884 0.614369501 0.699157895 1; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.785740274 0.614369501 0.699157895 1; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.81848501 0.614369501 0.699157895 1; 0.702033969 0.75 0.75 0.965034965 0.183028286 0.813148038 0.865055302 0.614369501 0.699157895 1; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.785740274 0.614369501 0.699157895 1.111111111; 1 0.75 0.75 0.965034965 0.183028286 0.769380055 0.81848501 0.614369501 0.699157895 1.111111111; 0.702033969 0.75 0.75 0.965034965 0.183028286 0.813148038 0.865055302 0.614369501 0.699157895 1.111111111; 0.555881736 0.75 0.75 0.426573427 0.183028286 0.868709625 0.924250509 0.614369501 0.699157895 0; 0.429859509 0.5 0.5 0.412587413 0.199667221 0.914187612 0.926421364 1 1 0; 0.429859509 0.5 0.5 0.412587413 0.399334443 0.914187612 0.926421364 1 1 0; 0.429859509 0.5 0.5 0.412587413 0.602329451 0.914187612 0.926421364 1 1 0; 0.429859509 0.5 0.5 0.412587413 1 0.914187612 0.926421364 1 1 0; 0.297756343 0.5 0.5 0.643356643 0.199667221 0.870623202 0.839017173 0.657869013 1 0; 0.297756343 0.5 0.5 0.643356643 0.399334443 0.870623202 0.839017173 0.657869013 1 0; 0.845040889 0.75 0.625 1 0.245923461 0.830058086 0.786261764 0.782013685 0.657894737 0; 0.654225204 1 1 0.444965035 0.18469218 0.827533793 0.972433783 0.631476051 0.643368421 0.333333333; 0.788425246 0.6 0.45 0.731678322 0.068219634 0.876920363 0.820946929 0.631476051 0.421052632 0; 0.788425246 0.6 0.45 0.731678322 0.10249584 0.876920363 0.820946929 0.631476051 0.421052632 0; 0.788425246 0.6 0.45 0.731678322 0.10249584 0.876920363 0.820946929 0.631476051 0.421052632 0.555555556; 0.788425246 0.6 0.45 0.731678322 0.204991681 0.876920363 0.820946929 0.631476051 0.421052632 0; 0.788425246 0.6 0.45 0.731678322 0.204991681 0.876920363 0.820946929 0.631476051 0.421052632 0.777777778] t=[0.133832335;0.137724551;0.134730539;0.125748503;0.144086826;0.449101796;0.616766467;0.422904192;0.844311377;0.95508982;0.909431138;0.97754491;0.863772455;0.863772455;1;0.97754491;0.932634731;0.95508982;0.932634731;0.909431138;0.97754491;0.97754491;0.931886228;0.909431138;0.5;0.155314371;0.177769461;0.188997006;0.254491018;0.164670659;0.202095808;0.628742515;0.799850299;0.168413174;0.174026946;0.25261976;0.249812874;0.308757485]%addpath d:\MATLAB6.5\toolbox\LS_SVMlab%type = 'function approximation';%kernel = 'RBF_kernel';%gam = 10;%sig2 = 0.2;%model = initlssvm(p,t,type,gam,sig2,kernel);%model = trainlssvm(model);%x=[0.450828266 0.9 0.65 0.384615385 0.070998336 0.950002714 0.848937615 0.384066471 0.662736842 0;% 0.450828266 0.9 0.65 0.384615385 0.141946755 0.950002714 0.848937615 0.384066471 0.662736842 0;% 0.450828266 0.9 0.65 0.384615385 0.212828619 0.950002714 0.848937615 0.384066471 0.662736842 0.222222222]%Yt = simlssvm(model,x)%[w1,b1,w2,b2]=initff(p',20,'logsig', 1,'logsig');%disp_fqre=1;max_epoch=20000;err_goal=0.01;lr=0.05;%tp=[disp_fqre max_epoch err_goal lr];%[w1,b1,w2,b2,te,tr]=trainbp(w1,b1,'logsig',w2,b2,'logsig',p',t',tp);%a=simuff(x',w1,b1,'logsig',w2,b2,'logsig')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -