⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 out-m88k.c

📁 这是完整的gcc源代码
💻 C
字号:
/* Subroutines for insn-output.c for Motorola 88000.   Copyright (C) 1987 Free Software Foundation, Inc.   Contributed by Michael Tiemann (tiemann@mcc.com)This file is part of GNU CC.GNU CC is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.GNU CC is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GNU CC; see the file COPYING.  If not, write tothe Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */#ifndef FILE#include <stdio.h>#endif/* This is where the condition code register lives.  */rtx cc0_reg_rtx;static rtx find_addr_reg ();#if 0char *output_compare (operands, opcode, exchange_opcode)     rtx *operands;     char *opcode;     char *exchange_opcode;{  static char buf[40];  rtx op1, op2;  if (GET_CODE (cc_prev_status.value2) == COMPARE)    {      op1 = XEXP (cc_prev_status.value2, 0);      op2 = XEXP (cc_prev_status.value2, 1);    }  else    {      op1 = cc_prev_status.value2;      op2 = const0_rtx;    }  if (GET_CODE (op1) == CONST_INT)    {      operands[2] = op1;      operands[1] = op2;      opcode = exchange_opcode;    }  else    {      operands[1] = op1;      operands[2] = op2;    }  sprintf (buf, "cmp r25,%%1,%%2\n\tbcnd %s,r25,%%l0", opcode);  return buf;}char *output_fcompare (operands, opcode, exchange_opcode)     rtx *operands;     char *opcode;     char *exchange_opcode;{  static char buf[40];  rtx op1, op2;  if (GET_CODE (cc_prev_status.value2) == COMPARE)    {      op1 = XEXP (cc_prev_status.value2, 0);      op2 = XEXP (cc_prev_status.value2, 1);    }  else    {      op1 = cc_prev_status.value2;      op2 = const0_rtx;    }  if (GET_CODE (op1) == CONST_DOUBLE)    {      operands[2] = op1;      operands[1] = op2;      opcode = exchange_opcode;    }  else    {      operands[1] = op1;      operands[2] = op2;    }  sprintf (buf, "cmp r25,%%1,%%2\n\tbcnd %s,r25,%%l0", opcode);  return buf;}char *output_store (operands, opcode, exchange_opcode)     rtx *operands;     char *opcode;     char *exchange_opcode;{  static char buf[40];  rtx op1, op2;  if (GET_CODE (cc_prev_status.value2) == COMPARE)    {      op1 = XEXP (cc_prev_status.value2, 0);      op2 = XEXP (cc_prev_status.value2, 1);    }  else    {      op1 = cc_prev_status.value2;      op2 = const0_rtx;    }  if (GET_CODE (op1) == CONST_INT)    {      operands[2] = op1;      operands[1] = op2;      opcode = exchange_opcode;    }  else    {      operands[1] = op1;      operands[2] = op2;    }  sprintf (buf, "cmp r25,%%1,%%2\n\textu %%0,r25,1<%s>", opcode);  return buf;}#endif/* Nonzero if OP is a valid second operand for an arithmetic insn.  */intarith_operand (op, mode)     rtx op;     enum machine_mode mode;{  return (register_operand (op, mode)	  || (GET_CODE (op) == CONST_INT	      && (unsigned) INTVAL (op) < 0x10000));}intarith32_operand (op, mode)     rtx op;     enum machine_mode mode;{  return (register_operand (op, mode) || GET_CODE (op) == CONST_INT);}intint5_operand (op, mode)     rtx op;     enum machine_mode mode;{  return (GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x20);}/* Return the best assembler insn template   for moving operands[1] into operands[0] as a fullword.  */static char *singlemove_string (operands)     rtx *operands;{  if (GET_CODE (operands[0]) == MEM)    return "st %r1,%0";  if (GET_CODE (operands[1]) == MEM)    return "ld %0,%1";  return "or %0,r0,%1";}/* Output assembler code to perform a doubleword move insn   with operands OPERANDS.  */char *output_move_double (operands)     rtx *operands;{  enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;  rtx latehalf[2];  rtx addreg0 = 0, addreg1 = 0;  /* First classify both operands.  */  if (REG_P (operands[0]))    optype0 = REGOP;  else if (offsettable_memref_p (operands[0]))    optype0 = OFFSOP;  else if (GET_CODE (operands[0]) == MEM)    optype0 = MEMOP;  else    optype0 = RNDOP;  if (REG_P (operands[1]))    optype1 = REGOP;  else if (CONSTANT_P (operands[1])	   || GET_CODE (operands[1]) == CONST_DOUBLE)    optype1 = CNSTOP;  else if (offsettable_memref_p (operands[1]))    optype1 = OFFSOP;  else if (GET_CODE (operands[1]) == MEM)    optype1 = MEMOP;  else    optype1 = RNDOP;  /* Check for the cases that the operand constraints are not     supposed to allow to happen.  Abort if we get one,     because generating code for these cases is painful.  */  if (optype0 == RNDOP || optype1 == RNDOP)    abort ();  /* If an operand is an unoffsettable memory ref, find a register     we can increment temporarily to make it refer to the second word.  */  if (optype0 == MEMOP)    addreg0 = find_addr_reg (operands[0]);  if (optype1 == MEMOP)    addreg1 = find_addr_reg (operands[1]);  /* Ok, we can do one word at a time.     Normally we do the low-numbered word first,     but if either operand is autodecrementing then we     do the high-numbered word first.     In either case, set up in LATEHALF the operands to use     for the high-numbered word and in some cases alter the     operands in OPERANDS to be suitable for the low-numbered word.  */  if (optype0 == REGOP)    latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);  else if (optype0 == OFFSOP)    latehalf[0] = adj_offsettable_operand (operands[0], 4);  else    latehalf[0] = operands[0];  if (optype1 == REGOP)    latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);  else if (optype1 == OFFSOP)    latehalf[1] = adj_offsettable_operand (operands[1], 4);  else if (optype1 == CNSTOP)    {      if (CONSTANT_P (operands[1]))	latehalf[1] = const0_rtx;      else if (GET_CODE (operands[1]) == CONST_DOUBLE)	{	  latehalf[1] = gen_rtx (CONST_INT, VOIDmode,				 CONST_DOUBLE_HIGH (operands[1]));	  operands[1] = gen_rtx (CONST_INT, VOIDmode,				 CONST_DOUBLE_LOW (operands[1]));	}    }  else    latehalf[1] = operands[1];  /* If the first move would clobber the source of the second one,     do them in the other order.  This happens only for registers;     such overlap can't happen in memory unless the user explicitly     sets it up, and that is an undefined circumstance.  */  if (optype0 == REGOP && optype1 == REGOP      && REGNO (operands[0]) == REGNO (latehalf[1]))    {      /* Make any unoffsettable addresses point at high-numbered word.  */      if (addreg0)	output_asm_insn ("addu %0,%0,4", &addreg0);      if (addreg1)	output_asm_insn ("addu %0,%0,4", &addreg1);      /* Do that word.  */      output_asm_insn (singlemove_string (latehalf), latehalf);      /* Undo the adds we just did.  */      if (addreg0)	output_asm_insn ("subu %0,%0,4", &addreg0);      if (addreg1)	output_asm_insn ("subu %0,%0,4", &addreg0);      /* Do low-numbered word.  */      return singlemove_string (operands);    }  /* Normal case: do the two words, low-numbered first.  */  output_asm_insn (singlemove_string (operands), operands);  /* Make any unoffsettable addresses point at high-numbered word.  */  if (addreg0)    output_asm_insn ("addu %0,%0,4", &addreg0);  if (addreg1)    output_asm_insn ("addu %0,%0,4", &addreg1);  /* Do that word.  */  output_asm_insn (singlemove_string (latehalf), latehalf);  /* Undo the adds we just did.  */  if (addreg0)    output_asm_insn ("subu %0,%0,4", &addreg0);  if (addreg1)    output_asm_insn ("subu %0,%0,4", &addreg1);  return "";}/* Return a REG that occurs in ADDR with coefficient 1.   ADDR can be effectively incremented by incrementing REG.  */static rtxfind_addr_reg (addr)     rtx addr;{  while (GET_CODE (addr) == PLUS)    {      if (GET_CODE (XEXP (addr, 0)) == REG)	addr = XEXP (addr, 0);      if (GET_CODE (XEXP (addr, 1)) == REG)	addr = XEXP (addr, 1);      if (CONSTANT_P (XEXP (addr, 0)))	addr = XEXP (addr, 1);      if (CONSTANT_P (XEXP (addr, 1)))	addr = XEXP (addr, 0);    }  if (GET_CODE (addr) == REG)    return addr;  return 0;}/* Output an ascii string.  */output_ascii (file, p, size)     FILE *file;     char *p;     int size;{  int i;  fprintf (file, "\tstring \"");  for (i = 0; i < size; i++)    {      register int c = p[i];      if (c == '\"' || c == '\\')	putc ('\\', file);      if (c >= ' ' && c < 0177)	putc (c, file);      else	{	  fprintf (file, "\\%03o", c);	  /* After an octal-escape, if a digit follows,	     terminate one string constant and start another.	     The Vax assembler fails to stop reading the escape	     after three digits, so this is the only way we	     can get it to parse the data properly.  */	  if (i < size - 1 && p[i + 1] >= '0' && p[i + 1] <= '9')	    fprintf (file, "\"\n\tstring \"");	}    }  fprintf (file, "\"\n");}voidoutput_load_address (operands)     rtx *operands;{  rtx base, offset;  if (CONSTANT_P (operands[3]))    {      output_asm_insn ("lda %0,%3", operands);      return;    }  if (REG_P (operands[3]))    {      if (REGNO (operands[0]) != REGNO (operands[3]))	output_asm_insn ("or %0,r0,%3", operands);      return;    }  base = XEXP (operands[3], 0);  offset = XEXP (operands[3], 1);  if (GET_CODE (base) == CONST_INT)    {      rtx tmp = base;      base = offset;      offset = tmp;    }  if (GET_CODE (offset) != CONST_INT)    abort ();  operands[6] = base;  operands[7] = offset;  if (REG_P (base))    if (FITS_16_BITS (offset))      output_asm_insn ("addu %0,%6,%7", operands);    else if (INT_FITS_16_BITS (- INTVAL (offset)))      output_asm_insn ("subu %0,%6,%7", operands);    else      output_asm_insn ("or.h %0,r0,hi16(%7)\n\tor %0,%0,lo16(%7)\n\tadd %0,%6,%0", operands);  else    {      if (GET_CODE (base) == MULT)	if (GET_MODE (base) == QImode)	  output_asm_insn ("lda.b %0,%6");	else if (GET_MODE (base) == HImode)	  output_asm_insn ("lda.h %0,%6");	else if (GET_MODE (base) == SImode)	  output_asm_insn ("lda %0,%6");	else	  output_asm_insn ("lda.d %0,%6");      else	output_asm_insn ("lda %0,%6");      if (FITS_16_BITS (offset))	output_asm_insn ("addu %0,%7,%0", operands);      else if (INT_FITS_16_BITS (- INTVAL (offset)))	output_asm_insn ("subu %0,%7,%0", operands);      else	output_asm_insn ("or.h r25,r0,hi16(%7)\n\tor r25,r0,lo16(%7)\n\taddu %0,%0r25", operands);    }}char *output_block_move (operands)     rtx *operands;{  static int movstrsi_label = 0;  int align = 4;  rtx xoperands[9];  int available[3];  int i, j;  /* Since we clobber untold things, nix the condition codes.  */  CC_STATUS_INIT;  /* Get past the MEMs.  */  operands[0] = XEXP (operands[0], 0);  operands[1] = XEXP (operands[1], 0);  xoperands[0] = 0;  xoperands[1] = 0;  xoperands[2] = 0;  available[0] = 1;  available[1] = 1;  available[2] = 1;#if 1  /* Prepare to juggle registers if necessary.  */  if (REG_P (operands[0]) && (unsigned) (REGNO (operands[0]) - 10) < 3)    {      xoperands[0] = operands[0];      available[REGNO (operands[0]) - 10] = 0;    }  if (REG_P (operands[1]) && (unsigned) (REGNO (operands[1]) - 10) < 3)    {      xoperands[1] = operands[1];      available[REGNO (operands[1]) - 10] = 0;    }  if (REG_P (operands[2]) && (unsigned) (REGNO (operands[2]) - 10) < 3)    {      xoperands[2] = operands[2];      available[REGNO (operands[2]) - 10] = 0;    }  for (i = 0; i < 3; i++)    {      if (xoperands[i])	continue;      if (available[0])	{	  xoperands[i] = gen_rtx (REG, SImode, 10);	  available[0] = 0;	  continue;	}      if (available[1])	{	  xoperands[i] = gen_rtx (REG, SImode, 11);	  available[1] = 0;	  continue;	}      xoperands[i] = gen_rtx (REG, SImode, 12);      available[2] = 0;    }#endif  /* First, figure out best alignment we may assume.  */  if (REG_P (operands[2]))    {      xoperands[5] = operands[2];      output_asm_insn ("sub %5,%2,1", xoperands);      align = 1;    }  else    {      int i = INTVAL (operands[2]);      if (i & 1)	align = 1;      else if (i & 3)	{	  align = 2;	  i >>= 1;	}      else	i >>= 2;      /* predecrement count.  */      i -= 1;      if (i < 0) abort ();      xoperands[5] = gen_rtx (CONST_INT, VOIDmode, i);      if (INT_FITS_16_BITS (i))	output_asm_insn ("addu %2,r0,%5", xoperands);      else if (INT_FITS_16_BITS (-i))	{	  xoperands[5] = gen_rtx (CONST_INT, VOIDmode, -i);	  output_asm_insn ("subu %2,r0,%5", xoperands);	}      else	output_asm_insn ("or.u %2,r0,hi16(%5)\n\tor %2,%2,lo16(%5)", xoperands);    }  /* Now, set up for pipelined operation: dest must contain     a pre-incremented address, because its index is pre-decremented.  */  xoperands[3] = plus_constant (operands[0], align);  output_load_address (xoperands);  xoperands[4] = operands[1];  output_load_address (xoperands+1);  xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);  if (align == 4)    output_asm_insn ("\n@Lm%3:\n\tld r25,%1[%2]\n\tsubu %2,%2,1\n\tbcnd.n ge0,%2,@Lm%3\n\tst r25,%0[%2]", xoperands);  else if (align == 2)    output_asm_insn ("\n@Lm%3:\n\tld.h r25,%1[%2]\n\tsubu %2,%2,1\n\tbcnd.n ge0,%2,@Lm%3\n\tst.h r25,%0[%2]", xoperands);  else    output_asm_insn ("\n@Lm%3:\n\tld.b r25,%1[%2]\n\tsubu %2,%2,1\n\tbcnd.n ge0,%2,@Lm%3\n\tst.b r25,%0[%2]", xoperands);  return "";}char *output_store_const_int (mode, operands)     enum machine_mode mode;     rtx *operands;{  int i = INTVAL (operands[1]);  if (INT_FITS_16_BITS (i))    return "addu %0,r0,%1";  if (INT_FITS_16_BITS (-i))    {      operands[1] = gen_rtx (CONST_INT, VOIDmode, -i);      return "subu %0,r0,%1";    }  if ((i & 0xffff) == 0)    return "or.u %0,r0,hi16(%1)";  /* Could check to see if number is a contiguous field     of 1's.  Then we could use the SET instruction.  */  if (mode == HImode)    {      warning ("truncating constant `%d' to fit in half-word", INTVAL (operands[1]));      return "or %0,r0,lo16(%1)";    }  if (mode == QImode)    {      warning ("truncating constant `%d' to fit in byte");      operands[1] = gen_rtx (CONST_INT, VOIDmode, i & 0xff);      return "or %0,r0,%1";    }  return "or.u %0,r0,hi16(%1)\n\tor %0,%0,lo16(%1)";}/* This routine assumes that floating point numbers are represented   in a manner which is consistent between host and target machines.  */char *output_store_const_float (mode, operands)     enum machine_mode mode;     rtx *operands;{  int i = INTVAL (operands[1]);  if (INT_FITS_16_BITS (i))    return "addu %0,r0,%1";  if (INT_FITS_16_BITS (-i))    {      operands[1] = gen_rtx (CONST_INT, VOIDmode, -i);      return "subu %0,r0,%1";    }  if ((i & 0xffff) == 0)    return "or.u %0,r0,hi16(%1)";  /* Could check to see if number is a contiguous field     of 1's.  Then we could use the SET instruction.  */  return "or.u %0,r0,hi16(%1)\n\tor %0,%0,lo16(%1)";}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -