⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 alliant.md

📁 这是完整的gcc源代码
💻 MD
📖 第 1 页 / 共 5 页
字号:
;;- Machine description for GNU C compiler for Alliant FX systems;;   Copyright (C) 1989 Free Software Foundation, Inc.;;   Adapted from m68k.md by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu);;   and Joe Weening (weening@gang-of-four.stanford.edu).;; This file is part of GNU CC.;; GNU CC is free software; you can redistribute it and/or modify;; it under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 1, or (at your option);; any later version.;; GNU CC is distributed in the hope that it will be useful,;; but WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the;; GNU General Public License for more details.;; You should have received a copy of the GNU General Public License;; along with GNU CC; see the file COPYING.  If not, write to;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.;;- instruction definitions;;- @@The original PO technology requires these to be ordered by speed,;;- @@    so that assigner will pick the fastest.;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.;;- When naming insn's (operand 0 of define_insn) be careful about using;;- names from other targets machine descriptions.;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code;;- updates for most instructions.;;- Operand classes for the register allocator:;;- 'a' one of the address registers can be used.;;- 'd' one of the data registers can be used.;;- 'f' one of the CE floating point registers can be used;;- 'r' either a data or an address register can be used.;;- Immediate integer operand constraints:;;- 'I'  1 .. 8;;- 'J'  -32768 .. 32767;;- 'K'  -128 .. 127;;- 'L'  -8 .. -1;;- Some remnants of constraint codes for the m68k ('x','y','G','H');;- may remain in the insn definitions.;;- Some of these insn's are composites of several Alliant op codes.;;- The assembler (or final @@??) insures that the appropriate one is;;- selected.;; Put tstsi first among test insns so it matches a CONST_INT operand.(define_insn "tstsi"  [(set (cc0)	(match_operand:SI 0 "general_operand" "rm"))]  ""  "*{  if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))    return \"tst%.l %0\";  /* If you think that the 68020 does not support tstl a0,     reread page B-167 of the 68020 manual more carefully.  */  /* On an address reg, cmpw may replace cmpl.  */  return \"cmp%.w %#0,%0\";}")(define_insn "tsthi"  [(set (cc0)	(match_operand:HI 0 "general_operand" "rm"))]  ""  "*{  if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))    return \"tst%.w %0\";  return \"cmp%.w %#0,%0\";}")(define_insn "tstqi"  [(set (cc0)	(match_operand:QI 0 "general_operand" "dm"))]  ""  "tst%.b %0")(define_insn "tstsf"  [(set (cc0)	(match_operand:SF 0 "nonimmediate_operand" "fm"))]  "TARGET_CE"  "*{  cc_status.flags = CC_IN_FP;  return \"ftest%.s %0\";}")(define_insn "tstdf"  [(set (cc0)	(match_operand:DF 0 "nonimmediate_operand" "fm"))]  "TARGET_CE"  "*{  cc_status.flags = CC_IN_FP;  return \"ftest%.d %0\";}");; compare instructions.;; Put cmpsi first among compare insns so it matches two CONST_INT operands.;; A composite of the cmp, cmpa, & cmpi m68000 op codes.(define_insn "cmpsi"  [(set (cc0)	(compare (match_operand:SI 0 "general_operand" "rKs,mr,>")		 (match_operand:SI 1 "general_operand" "mr,Ksr,>")))]  ""  "*{  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)    return \"cmpm%.l %1,%0\";  if (REG_P (operands[1])      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))    {      cc_status.flags |= CC_REVERSED;      return \"cmp%.l %d0,%d1\";     }  return \"cmp%.l %d1,%d0\";}")(define_insn "cmphi"  [(set (cc0)	(compare (match_operand:HI 0 "general_operand" "rnm,d,n,m")		 (match_operand:HI 1 "general_operand" "d,rnm,m,n")))]  ""  "*{  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)    return \"cmpm%.w %1,%0\";  if ((REG_P (operands[1]) && !ADDRESS_REG_P (operands[1]))      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))    { cc_status.flags |= CC_REVERSED;      return \"cmp%.w %d0,%d1\";     }  return \"cmp%.w %d1,%d0\";}")(define_insn "cmpqi"  [(set (cc0)	(compare (match_operand:QI 0 "general_operand" "dn,md,>")		 (match_operand:QI 1 "general_operand" "dm,nd,>")))]  ""  "*{  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)    return \"cmpm%.b %1,%0\";  if (REG_P (operands[1])      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))    {      cc_status.flags |= CC_REVERSED;      return \"cmp%.b %d0,%d1\";    }  return \"cmp%.b %d1,%d0\";}")(define_insn "cmpdf"  [(set (cc0)	(compare (match_operand:DF 0 "nonimmediate_operand" "f,m")		 (match_operand:DF 1 "nonimmediate_operand" "fm,f")))]  "TARGET_CE"  "*{  cc_status.flags = CC_IN_FP;  if (FP_REG_P (operands[0]))    return \"fcmp%.d %1,%0\";  cc_status.flags |= CC_REVERSED;  return \"fcmp%.d %0,%1\";}")(define_insn "cmpsf"  [(set (cc0)	(compare (match_operand:SF 0 "nonimmediate_operand" "f,m")		 (match_operand:SF 1 "nonimmediate_operand" "fm,f")))]  "TARGET_CE"  "*{  cc_status.flags = CC_IN_FP;  if (FP_REG_P (operands[0]))    return \"fcmp%.s %1,%0\";  cc_status.flags |= CC_REVERSED;  return \"fcmp%.s %0,%1\";}");; Recognizers for btst instructions.(define_insn ""  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do")			    (const_int 1)			    (minus:SI (const_int 7)				      (match_operand:SI 1 "general_operand" "di"))))]  ""  "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")(define_insn ""  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d")			    (const_int 1)			    (minus:SI (const_int 31)				      (match_operand:SI 1 "general_operand" "di"))))]  ""  "* { return output_btst (operands, operands[1], operands[0], insn, 31); }");; The following two patterns are like the previous two;; except that they use the fact that bit-number operands;; are automatically masked to 3 or 5 bits.(define_insn ""  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do")			    (const_int 1)			    (minus:SI (const_int 7)				      (and:SI				       (match_operand:SI 1 "general_operand" "d")				       (const_int 7)))))]  ""  "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")(define_insn ""  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d")			    (const_int 1)			    (minus:SI (const_int 31)				      (and:SI				       (match_operand:SI 1 "general_operand" "d")				       (const_int 31)))))]  ""  "* { return output_btst (operands, operands[1], operands[0], insn, 31); }");; Nonoffsettable mem refs are ok in this one pattern;; since we don't try to adjust them.(define_insn ""  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "md")			    (const_int 1)			    (match_operand:SI 1 "general_operand" "i")))]  "GET_CODE (operands[1]) == CONST_INT   && (unsigned) INTVAL (operands[1]) < 8"  "*{  operands[1] = gen_rtx (CONST_INT, VOIDmode, 7 - INTVAL (operands[1]));  return output_btst (operands, operands[1], operands[0], insn, 7);}")(define_insn ""  ;; The constraint "o,d" here means that a nonoffsettable memref  ;; will match the first alternative, and its address will be reloaded.  ;; Copying the memory contents into a reg would be incorrect if the  ;; bit position is over 7.  [(set (cc0) (zero_extract (match_operand:HI 0 "nonimmediate_operand" "o,d")			    (const_int 1)			    (match_operand:SI 1 "general_operand" "i,i")))]  "GET_CODE (operands[1]) == CONST_INT"  "*{  if (GET_CODE (operands[0]) == MEM)    {      operands[0] = adj_offsettable_operand (operands[0],					     INTVAL (operands[1]) / 8);      operands[1] = gen_rtx (CONST_INT, VOIDmode, 			     7 - INTVAL (operands[1]) % 8);      return output_btst (operands, operands[1], operands[0], insn, 7);    }  operands[1] = gen_rtx (CONST_INT, VOIDmode,			 15 - INTVAL (operands[1]));  return output_btst (operands, operands[1], operands[0], insn, 15);}")(define_insn ""  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "do")			    (const_int 1)			    (match_operand:SI 1 "general_operand" "i")))]  "GET_CODE (operands[1]) == CONST_INT"  "*{  if (GET_CODE (operands[0]) == MEM)    {      operands[0] = adj_offsettable_operand (operands[0],					     INTVAL (operands[1]) / 8);      operands[1] = gen_rtx (CONST_INT, VOIDmode, 			     7 - INTVAL (operands[1]) % 8);      return output_btst (operands, operands[1], operands[0], insn, 7);    }  operands[1] = gen_rtx (CONST_INT, VOIDmode,			 31 - INTVAL (operands[1]));  return output_btst (operands, operands[1], operands[0], insn, 31);}")(define_insn ""  [(set (cc0) (subreg:SI (lshiftrt:QI (match_operand:QI 0 "nonimmediate_operand" "dm")				      (const_int 7))			 0))]  ""  "*{  cc_status.flags = CC_Z_IN_NOT_N | CC_NOT_NEGATIVE;  return \"tst%.b %0\";}")(define_insn ""  [(set (cc0) (and:SI (sign_extend:SI (sign_extend:HI (match_operand:QI 0 "nonimmediate_operand" "dm")))		      (match_operand:SI 1 "general_operand" "i")))]  "(GET_CODE (operands[1]) == CONST_INT    && (unsigned) INTVAL (operands[1]) < 0x100    && exact_log2 (INTVAL (operands[1])) >= 0)"  "*{ register int log = exact_log2 (INTVAL (operands[1]));  operands[1] = gen_rtx (CONST_INT, VOIDmode, log);  return output_btst (operands, operands[1], operands[0], insn, 7);}");; move instructions;; A special case in which it is not desirable;; to reload the constant into a data register.(define_insn ""  [(set (match_operand:SI 0 "push_operand" "=m")	(match_operand:SI 1 "general_operand" "J"))]  "GET_CODE (operands[1]) == CONST_INT   && INTVAL (operands[1]) >= -0x8000   && INTVAL (operands[1]) < 0x8000"  "*{  if (operands[1] == const0_rtx)    return \"clr%.l %0\";  return \"pea %a1\";}");This is never used.;(define_insn "swapsi";  [(set (match_operand:SI 0 "general_operand" "r");	(match_operand:SI 1 "general_operand" "r"));   (set (match_dup 1) (match_dup 0))];  "";  "exg %1,%0");; Special case of fullword move when source is zero.;; The reason this is special is to avoid loading a zero;; into a data reg with moveq in order to store it elsewhere.   (define_insn ""  [(set (match_operand:SI 0 "general_operand" "=g")	(const_int 0))]  ""  "*{  if (ADDRESS_REG_P (operands[0]))    return \"sub%.l %0,%0\";  return \"clr%.l %0\";}");; General case of fullword move.  The register constraints;; force integer constants in range for a moveq to be reloaded;; if they are headed for memory.(define_insn "movsi"  ;; Notes: make sure no alternative allows g vs g.  ;; We don't allow f-regs since fixed point cannot go in them.  ;; We do allow y and x regs since fixed point is allowed in them.  [(set (match_operand:SI 0 "general_operand" "=g,da,y,!*x*r*m")	(match_operand:SI 1 "general_operand" "daymKs,i,g,*x*r*m"))]  ""  "*{  if (GET_CODE (operands[1]) == CONST_INT)    {      if (operands[1] == const0_rtx	  && (DATA_REG_P (operands[0])	      || GET_CODE (operands[0]) == MEM))	return \"clr%.l %0\";      else if (DATA_REG_P (operands[0])	       && INTVAL (operands[1]) < 128	       && INTVAL (operands[1]) >= -128)	return \"moveq %1,%0\";      else if (ADDRESS_REG_P (operands[0])	       && INTVAL (operands[1]) < 0x8000	       && INTVAL (operands[1]) >= -0x8000)	return \"mov%.w %1,%0\";      else if (push_operand (operands[0], SImode)	       && INTVAL (operands[1]) < 0x8000	       && INTVAL (operands[1]) >= -0x8000)        return \"pea %a1\";    }  else if ((GET_CODE (operands[1]) == SYMBOL_REF	    || GET_CODE (operands[1]) == CONST)	   && push_operand (operands[0], SImode))    return \"pea %a1\";  else if ((GET_CODE (operands[1]) == SYMBOL_REF	    || GET_CODE (operands[1]) == CONST)	   && ADDRESS_REG_P (operands[0]))    return \"lea %a1,%0\";  return \"mov%.l %1,%0\";}")(define_insn "movhi"  [(set (match_operand:HI 0 "general_operand" "=g")	(match_operand:HI 1 "general_operand" "g"))]  ""  "*{  if (GET_CODE (operands[1]) == CONST_INT)    {      if (operands[1] == const0_rtx	  && (DATA_REG_P (operands[0])	      || GET_CODE (operands[0]) == MEM))	return \"clr%.w %0\";      else if (DATA_REG_P (operands[0])	       && INTVAL (operands[1]) < 128	       && INTVAL (operands[1]) >= -128)        {	  return \"moveq %1,%0\";	}      else if (INTVAL (operands[1]) < 0x8000	       && INTVAL (operands[1]) >= -0x8000)	return \"mov%.w %1,%0\";    }  else if (CONSTANT_P (operands[1]))    return \"mov%.l %1,%0\";  /* Recognize the insn before a tablejump, one that refers     to a table of offsets.  Such an insn will need to refer     to a label on the insn.  So output one.  Use the label-number     of the table of offsets to generate this label.  */  if (GET_CODE (operands[1]) == MEM      && GET_CODE (XEXP (operands[1], 0)) == PLUS      && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF	  || GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF)      && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS      && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) != PLUS)    {      rtx labelref;      if (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF)	labelref = XEXP (XEXP (operands[1], 0), 0);      else	labelref = XEXP (XEXP (operands[1], 0), 1);      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"LI\",				 CODE_LABEL_NUMBER (XEXP (labelref, 0)));    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -