📄 tm-spur.h
字号:
It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. *//* On SPUR, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \{ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \ copy_to_mode_reg (SImode, XEXP (X, 1))); \ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \ (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \ copy_to_mode_reg (SImode, XEXP (X, 0))); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \ (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \ force_operand (XEXP (X, 0), 0)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \ (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \ force_operand (XEXP (X, 1), 0)); \ if (memory_address_p (MODE, X)) \ goto WIN; }/* Go to LABEL if ADDR (a legitimate address expression) has an effect that depends on the machine mode it is used for. On the SPUR this is never true. */#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)/* Specify the machine mode that this machine uses for the index in the tablejump instruction. */#define CASE_VECTOR_MODE SImode/* Define this if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. *//* #define CASE_VECTOR_PC_RELATIVE *//* Specify the tree operation to be used to convert reals to integers. */#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR/* This is the kind of divide that is easiest to do in the general case. */#define EASY_DIV_EXPR TRUNC_DIV_EXPR/* Define this as 1 if `char' should by default be signed; else as 0. */#define DEFAULT_SIGNED_CHAR 0/* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */#define MOVE_MAX 4/* Nonzero if access to memory by bytes is slow and undesirable. */#define SLOW_BYTE_ACCESS 1/* This is BSD, so it wants DBX format. */#define DBX_DEBUGGING_INFO/* Do not break .stabs pseudos into continuations. */#define DBX_CONTIN_LENGTH 0/* Don't try to use the `x' type-cross-reference character in DBX data. Also has the consequence of putting each struct, union or enum into a separate .stabs, containing only cross-refs to the others. */#define DBX_NO_XREFS/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1/* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */#define Pmode SImode/* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */#define FUNCTION_MODE SImode/* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */#define NO_FUNCTION_CSE/* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */#define CONST_COSTS(RTX,CODE) \ case CONST_INT: \ if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) return 1; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 2; \ case CONST_DOUBLE: \ return 4;/* Tell final.c how to eliminate redundant test instructions. *//* Here we define machine-dependent flags and fields in cc_status (see `conditions.h'). *//* (None are needed on SPUR.) *//* Store in cc_status the expressions that the condition codes will describe after execution of an instruction whose pattern is EXP. Do not alter them if the instruction would not alter the cc's. *//* The SPUR does not really have a condition code. */#define NOTICE_UPDATE_CC(EXP, INSN) \{ CC_STATUS_INIT; }/* Control the assembler format that we output. *//* Output at beginning of assembler file. */#define ASM_FILE_START(FILE)/* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */#define ASM_APP_ON ""/* Output to assembler file text saying following lines no longer contain unusual constructs. */#define ASM_APP_OFF ""/* Output before read-only data. */#define TEXT_SECTION_ASM_OP ".text"/* Output before writable data. */#define DATA_SECTION_ASM_OP ".data"/* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */#define REGISTER_NAMES \{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \ "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \ "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \ "r30", "r31", \ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \ "f10", "f11", "f12", "f13", "f14" }/* How to renumber registers for dbx and gdb. */#define DBX_REGISTER_NUMBER(REGNO) (REGNO)/* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */#define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)/* This is how to output a command to make the user-level label named NAME defined for reference from other files. */#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)/* This is how to output a reference to a user-level label named NAME. `assemble_name' uses this. */#define ASM_OUTPUT_LABELREF(FILE,NAME) \ fprintf (FILE, "_%s", NAME)/* This is how to output an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d:\n", PREFIX, NUM)/* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*%s%d", PREFIX, NUM)/* This is how to output an assembler line defining a `double' constant. */#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ fprintf (FILE, "\t.double %.20e\n", (VALUE))/* This is how to output an assembler line defining a `float' constant. */#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ fprintf (FILE, "\t.single %.12e\n", (VALUE))/* This is how to output an assembler line defining an `int' constant. */#define ASM_OUTPUT_INT(FILE,VALUE) \( fprintf (FILE, "\t.long "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))/* Likewise for `char' and `short' constants. */#define ASM_OUTPUT_SHORT(FILE,VALUE) \( fprintf (FILE, "\t.word "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))#define ASM_OUTPUT_CHAR(FILE,VALUE) \( fprintf (FILE, "\t.byte "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))/* This is how to output an assembler line for a numeric constant byte. */#define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\t.byte 0x%x\n", (VALUE))/* This is how to output code to push a register on the stack. It need not be very fast code. */#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ fprintf (FILE, "\tadd_nt r4,r4,$-4\n\tst_32 %s,r4,$0\n", reg_names[REGNO])/* This is how to output an insn to pop a register from the stack. It need not be very fast code. */#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ fprintf (FILE, "\tld_32 %s,r4,$0\n\tadd_nt r4,r4,$4\n", reg_names[REGNO])/* This is how to output an element of a case-vector that is absolute. */#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t.long L%d\n", VALUE)/* This is how to output an element of a case-vector that is relative. (SPUR does not use such vectors, but we must define this macro anyway.) */#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)/* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */#define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\t.align %d\n", (LOG))#define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t.space %u\n", (SIZE))/* This says how to output an assembler line to define a global common symbol. */#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \( fputs (".comm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED)))/* This says how to output an assembler line to define a local common symbol. */#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \( fputs (".lcomm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED)))/* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))/* Define the parentheses used to group arithmetic operations in assembler code. */#define ASM_OPEN_PAREN "("#define ASM_CLOSE_PAREN ")"/* Define results of standard character escape sequences. */#define TARGET_BELL 007#define TARGET_BS 010#define TARGET_TAB 011#define TARGET_NEWLINE 012#define TARGET_VT 013#define TARGET_FF 014#define TARGET_CR 015/* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. On SPUR, the CODE can be `r', meaning this is a register-only operand and an immediate zero should be represented as `r0'. */#define PRINT_OPERAND(FILE, X, CODE) \{ if (GET_CODE (X) == REG) \ fprintf (FILE, "%s", reg_names[REGNO (X)]); \ else if (GET_CODE (X) == MEM) \ output_address (XEXP (X, 0)); \ else if (GET_CODE (X) == CONST_DOUBLE) \ abort (); \ else if ((CODE) == 'r' && (X) == const0_rtx) \ fprintf (FILE, "r0"); \ else { putc ('$', FILE); output_addr_const (FILE, X); }}/* Print a memory address as an operand to reference that memory location. */#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \{ register rtx base, index = 0; \ int offset = 0; \ register rtx addr = ADDR; \ if (GET_CODE (addr) == REG) \ { \ fprintf (FILE, "%s,$0", reg_names[REGNO (addr)]); \ } \ else if (GET_CODE (addr) == PLUS) \ { \ if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\ else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\ else \ base = XEXP (addr, 0), index = XEXP (addr, 1); \ fprintf (FILE, "%s,", reg_names[REGNO (base)]); \ if (index == 0) \ fprintf (FILE, "$%d", offset); \ else \ fprintf (FILE, "%s,", reg_names[REGNO (index)]); \ } \ else \ { \ fprintf (FILE, "r24,$("); \ output_addr_const (FILE, addr); \ fprintf (FILE, "-0b)"); \ } \}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -