📄 tm-m88k.h
字号:
/* Define this if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. *//* #define CASE_VECTOR_PC_RELATIVE *//* Specify the tree operation to be used to convert reals to integers. */#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR/* This is the kind of divide that is easiest to do in the general case. */#define EASY_DIV_EXPR TRUNC_DIV_EXPR/* Define this as 1 if `char' should by default be signed; else as 0. */#define DEFAULT_SIGNED_CHAR 1/* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */#define MOVE_MAX 4/* Nonzero if access to memory by bytes is slow and undesirable. */#define SLOW_BYTE_ACCESS 0/* Do not break .stabs pseudos into continuations. */#define DBX_CONTIN_LENGTH 0/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1/* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */#define STORE_FLAG_VALUE 1/* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */#define Pmode SImode/* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */#define FUNCTION_MODE SImode/* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */#define NO_FUNCTION_CSE/* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */#define CONST_COSTS(RTX,CODE) \ case CONST_INT: \ if ((unsigned) INTVAL (RTX) < 0x10000) return 1; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 2; \ case CONST_DOUBLE: \ return 4;/* Tell emit-rtl.c how to initialize special values on a per-function bass. */extern int optimize;extern struct rtx_def *cc0_reg_rtx;typedef struct { struct rtx_def *ccr; } cc_status_mdep;#define CC_STATUS_MDEP cc_status_mdep#define INIT_EMIT_MDEP \{ \ cc0_reg_rtx = gen_rtx (REG, SImode, 25); \}/* Tell final.c how to eliminate redundant test instructions. *//* Here we define machine-dependent flags and fields in cc_status (see `conditions.h'). */#define CC_IN_FCCR 04000/* Store in cc_status the expressions that the condition codes will describe after execution of an instruction whose pattern is EXP. Do not alter them if the instruction would not alter the cc's. */#define NOTICE_UPDATE_CC(EXP, INSN) \{ if (GET_CODE (EXP) == SET) \ { if (GET_CODE (SET_DEST (EXP)) == CC0) \ { cc_status.flags = 0; \ cc_status.value1 = SET_DEST (EXP); \ cc_status.value2 = SET_SRC (EXP); \ } \ else if (GET_CODE (SET_DEST (EXP)) == REG) \ { if ((cc_status.value1 \ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1))) \ cc_status.value1 = 0; \ if ((cc_status.value2 \ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2))) \ cc_status.value2 = 0; \ } \ else if (GET_CODE (SET_DEST (EXP)) == MEM) \ { CC_STATUS_INIT; } \ } \ else if (GET_CODE (EXP) == PARALLEL \ && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \ { cc_status.flags = 0; \ cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \ cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \ } \ else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \ { if ((cc_status.value1 \ && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1))) \ cc_status.value1 = 0; \ if ((cc_status.value2 \ && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2))) \ cc_status.value2 = 0; \ } \ else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \ { CC_STATUS_INIT; } \ } \ else if (GET_CODE (EXP) == CALL) \ { /* all bets are off */ CC_STATUS_INIT; } \ if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ && cc_status.value2 \ && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ printf ("here!\n", cc_status.value2 = 0); \}/* Control the assembler format that we output. *//* Output at beginning of assembler file. */#define ASM_FILE_START(FILE)/* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */#define ASM_APP_ON ""/* Output to assembler file text saying following lines no longer contain unusual constructs. */#define ASM_APP_OFF ""/* Output before read-only data. */#define TEXT_SECTION_ASM_OP "\ttext"/* Output before writable data. */#define DATA_SECTION_ASM_OP "\tdata"/* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */#define REGISTER_NAMES \{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \ "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \ "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \ "r30", "r31"}/* How to renumber registers for dbx and gdb. */#define DBX_REGISTER_NUMBER(REGNO) (REGNO)/* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */#define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)/* This is how to output a command to make the user-level label named NAME defined for reference from other files. */#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs ("\tglobal\t", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)/* This is how to output a reference to a user-level label named NAME. `assemble_name' uses this. */#define ASM_OUTPUT_LABELREF(FILE,NAME) \ fprintf (FILE, "_%s", NAME)/* This is how to output an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "@%s%d:\n", PREFIX, NUM)/* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*@%s%d", PREFIX, NUM)/* This is how to output an assembler line defining a `double' constant. */#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ fprintf (FILE, "\tdouble %.20e\n", (VALUE))/* This is how to output an assembler line defining a `float' constant. */#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ fprintf (FILE, "\tfloat %.12e\n", (VALUE))/* This is how to output an assembler line defining an `int' constant. */#define ASM_OUTPUT_INT(FILE,VALUE) \( fprintf (FILE, "\tword "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))/* Likewise for `short' and `char' constants. */#define ASM_OUTPUT_SHORT(FILE,VALUE) \( fprintf (FILE, "\thalf "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))#define ASM_OUTPUT_CHAR(FILE,VALUE) \( fprintf (FILE, "\tbyte "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n"))/* This is how to output an assembler line for a numeric constant byte. */#define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\tbyte 0x%x\n", (VALUE))#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ output_ascii (FILE, P, SIZE)#define ASM_OUTPUT_ADDR_VEC_PROLOGUE(FILE, MODE, LEN) \ fprintf (FILE, "\tjmp r1\n");/* This is how to output an element of a case-vector that is absolute. */#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t@L%d\n", VALUE)/* This is how to output an element of a case-vector that is relative. (the m88000 does not use such vectors, but we must define this macro anyway.) */#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ fprintf (FILE, "\tword @L%d-@L%d\n", VALUE, REL)/* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */#define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\talign %d\n", 1<<(LOG))#define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\tzero %u\n", (SIZE))/* This says how to output an assembler line to define a global common symbol. */#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \( fputs ("\tcomm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED)))/* This says how to output an assembler line to define a local common symbol. */#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \( fprintf ((FILE), "\talign %d\n", (SIZE) <= 4 ? 4 : 8), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ":\n\tzero %u\n", (ROUNDED)))/* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))/* Define the parentheses used to group arithmetic operations in assembler code. */#define ASM_OPEN_PAREN "("#define ASM_CLOSE_PAREN ")"/* Define results of standard character escape sequences. */#define TARGET_BELL 007#define TARGET_BS 010#define TARGET_TAB 011#define TARGET_NEWLINE 012#define TARGET_VT 013#define TARGET_FF 014#define TARGET_CR 015/* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. On the m88000, the CODE can be `r', meaning this is a register-only operand and an immediate zero should be represented as `r0'. */#define PRINT_OPERAND(FILE, X, CODE) \{ if (GET_CODE (X) == REG) \ fprintf (FILE, "%s", reg_names[REGNO (X)]); \ else if (GET_CODE (X) == MEM) \ output_address (XEXP (X, 0)); \ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ { union { double d; int i[2]; } u; \ union { float f; int i; } u1; \ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ u1.f = u.d; \ if (CODE == 'f') \ fprintf (FILE, "0r%.9g", u1.f); \ else \ fprintf (FILE, "0x%x", u1.i); } \ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \ { union { double d; int i[2]; } u; \ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ fprintf (FILE, "0r%.20g", u.d); } \ else if ((CODE) == 'r' && (X) == const0_rtx) \ fprintf (FILE, "r0"); \ else { output_addr_const (FILE, X); }}/* Print a memory address as an operand to reference that memory location. */#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \{ register rtx base, index = 0; \ register rtx addr = ADDR; \ register rtx reg0, reg1; \ switch (GET_CODE (addr)) \ { \ case REG: \ fprintf (FILE, "r0,%s", reg_names[REGNO (addr)]); \ break; \ case PLUS: \ reg0 = XEXP (addr, 0); \ reg1 = XEXP (addr, 1); \ if (GET_CODE (reg0) == MULT) \ { rtx tmp = reg0; reg0 = reg1; reg1 = tmp; } \ if (REG_P (reg0)) \ if (REG_P (reg1)) \ fprintf (FILE, "%s,%s", \ reg_names[REGNO (reg0)], \ reg_names[REGNO (reg1)]); \ else if (GET_CODE (reg1) == CONST_INT) \ { \ int offset = INTVAL (reg1); \ fprintf (FILE, "%s,%d", reg_names[REGNO (reg0)], offset); \ } \ else if (GET_CODE (reg1) == MULT) \ fprintf (FILE, "%s[%s]", \ reg_names[REGNO (reg0)], \ reg_names[REGNO (XEXP (reg1, 0))]); \ else fatal ("bad XEXP (1) to PRINT_OPERAND_ADDRESS"); \ else fatal ("unknown PLUS case in PRINT_OPERAND_ADDRESS"); \ break; \ case MULT: \ fprintf (FILE, "r0[%s]", reg_names[REGNO (XEXP (addr, 0))]); \ break; \ default: \ fprintf (FILE, "r0,"); \ output_addr_const (FILE, addr); \ }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -