⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 out-tahoe.c

📁 这是完整的gcc源代码
💻 C
字号:
/* Subroutines for insn-output.c for Tahoe.   Copyright (C) 1989 Free Software Foundation, Inc.This file is part of GNU CC.GNU CC is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.GNU CC is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GNU CC; see the file COPYING.  If not, write tothe Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  *//* * File: output-tahoe.c * * This port made at the University of Buffalo by Devon Bowen, * Dale Wiles and Kevin Zachmann. * * Mail bugs reports or fixes to:	gcc@cs.buffalo.edu *//* most of the print_operand_address function was taken from the vax	*//* since the modes are basically the same. I had to add a special case,	*//* though, for symbol references with offsets.				*/#include <stdio.h>print_operand_address (file, addr)     FILE *file;     register rtx addr;{  register rtx reg1, reg2, breg, ireg;  rtx offset;  static char *reg_name[] = REGISTER_NAMES; retry:  switch (GET_CODE (addr))    {    case MEM:      fprintf (file, "*");      addr = XEXP (addr, 0);      goto retry;    case REG:      fprintf (file, "(%s)", reg_name [REGNO (addr)]);      break;    case PRE_DEC:      fprintf (file, "-(%s)", reg_name [REGNO (XEXP (addr, 0))]);      break;    case POST_INC:      fprintf (file, "(%s)+", reg_name [REGNO (XEXP (addr, 0))]);      break;    case PLUS:      reg1 = 0;	reg2 = 0;      ireg = 0;	breg = 0;      offset = 0;      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))	  && GET_CODE (XEXP (addr, 1)) == CONST_INT)	output_addr_const (file, addr);      if (CONSTANT_ADDRESS_P (XEXP (addr, 1))	  && GET_CODE (XEXP (addr, 0)) == CONST_INT)	output_addr_const (file, addr);      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))	  || GET_CODE (XEXP (addr, 0)) == MEM)	{	  offset = XEXP (addr, 0);	  addr = XEXP (addr, 1);	}      else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))	       || GET_CODE (XEXP (addr, 1)) == MEM)	{	  offset = XEXP (addr, 1);	  addr = XEXP (addr, 0);	}      if (GET_CODE (addr) != PLUS)	;      else if (GET_CODE (XEXP (addr, 0)) == MULT)	{	  reg1 = XEXP (addr, 0);	  addr = XEXP (addr, 1);	}      else if (GET_CODE (XEXP (addr, 1)) == MULT)	{	  reg1 = XEXP (addr, 1);	  addr = XEXP (addr, 0);	}      else if (GET_CODE (XEXP (addr, 0)) == REG)	{	  reg1 = XEXP (addr, 0);	  addr = XEXP (addr, 1);	}      else if (GET_CODE (XEXP (addr, 1)) == REG)	{	  reg1 = XEXP (addr, 1);	  addr = XEXP (addr, 0);	}      if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)	{	  if (reg1 == 0)	    reg1 = addr;	  else	    reg2 = addr;	  addr = 0;	}      if (offset != 0)	{	  if (addr != 0) abort ();	  addr = offset;	}      if (reg1 != 0 && GET_CODE (reg1) == MULT)	{	  breg = reg2;	  ireg = reg1;	}      else if (reg2 != 0 && GET_CODE (reg2) == MULT)	{	  breg = reg1;	  ireg = reg2;	}      else if (reg2 != 0 || GET_CODE (addr) == MEM)	{	  breg = reg2;	  ireg = reg1;	}      else	{	  breg = reg1;	  ireg = reg2;	}      if (addr != 0)	output_address (offset);      if (breg != 0)	{	  if (GET_CODE (breg) != REG)	    abort ();	  fprintf (file, "(%s)", reg_name[REGNO (breg)]);	}      if (ireg != 0)	{	  if (GET_CODE (ireg) == MULT)	    ireg = XEXP (ireg, 0);	  if (GET_CODE (ireg) != REG)	    abort ();	  fprintf (file, "[%s]", reg_name[REGNO (ireg)]);	}      break;    default:      output_addr_const (file, addr);    }}/* Do a quick check and find out what the best way to do the *//* mini-move is. Could be a push or a move.....		     */static char *singlemove_string (operands)     rtx *operands;{  if (GET_CODE (operands[0]) == MEM      && GET_CODE (XEXP (operands[0],0)) == PRE_DEC)    return "pushl %1";  return "movl %1,%0";}/* given the rtx for an address, return true if the given *//* register number is used in the address somewhere.	  */intregisused (addr,regnum)     rtx addr;     int regnum;{  if (GET_CODE (addr) == REG)    {      if (REGNO (addr) == regnum)	return (1);      else	return (0);    }  if (GET_CODE (addr) == MEM)    return regisused (XEXP (addr,0),regnum);  if (GET_CODE (addr) == MULT || GET_CODE (addr) == PLUS)    return (regisused (XEXP (addr,0),regnum)	    || regisused (XEXP (addr,1),regnum));  return 0;}/* Given some rtx, traverse it and return the register used in a *//* index. If no index is found, return 0.			 */rtxindex_reg (addr)     rtx addr;{  rtx temp;  if (GET_CODE (addr) == MEM)    return index_reg (XEXP (addr,0));  if (GET_CODE (addr) == MULT)    {      if (GET_CODE (XEXP (addr,0)) == REG)	return XEXP (addr,0);      else	return XEXP (addr,1);    }  if (GET_CODE (addr) == PLUS)    {      if (temp = index_reg (XEXP (addr,0)))	return temp;      else	return index_reg (XEXP (addr,1));    }  return 0;}/* simulate the move double by generating two movl's. You have *//* to be careful about mixing modes here. A future improvement *//* would be to allow immediate doubles.			       */char *output_move_double (operands)     rtx *operands;{  enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, INDOP, CNSTOP, RNDOP } optype0, optype1;  rtx latehalf[2];  rtx shftreg0 = 0, shftreg1 = 0;  rtx temp0 = 0, temp1 = 0;  rtx addreg0 = 0, addreg1 = 0;  int dohighfirst = 0;  /* First classify both operands. */  if (REG_P (operands[0]))    optype0 = REGOP;  else if ((GET_CODE (operands[0])==MEM) && (shftreg0=index_reg (operands[0])))    optype0 = INDOP;  else if (offsettable_memref_p (operands[0]))    optype0 = OFFSOP;  else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)    {      optype0 = PUSHOP;      dohighfirst++;    }  else if (GET_CODE (operands[0]) == MEM)    optype0 = MEMOP;  else    optype0 = RNDOP;  if (REG_P (operands[1]))    optype1 = REGOP;  else if ((GET_CODE (operands[1])==MEM) && (shftreg1=index_reg (operands[1])))    optype1 = INDOP;  else if (offsettable_memref_p (operands[1]))    optype1 = OFFSOP;  else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)    optype1 = POPOP;   else if (GET_CODE (operands[1]) == MEM)    optype1 = MEMOP;  else if (GET_CODE (operands[1]) == CONST_DOUBLE || CONSTANT_P (operands[1]))    optype1 = CNSTOP;  else    optype1 = RNDOP;  /* set up for the high byte move for operand zero */  switch (optype0)    {      /* if it's a register, just use the next highest in the */      /* high address move.					*/    case REGOP:      latehalf[0] = gen_rtx (REG,SImode,REGNO (operands[0])+1);      break;      /* for an offsettable address, use the gcc function to  */      /* modify the operand to get an offset of 4 higher for  */      /* the second move.					*/    case OFFSOP:      latehalf[0] = adj_offsettable_operand (operands[0], 4);      break;      /* if the operand is MEMOP type, it must be a pointer	*/      /* to a pointer. So just remember to increase the mem	*/      /* location and use the same operand.			*/    case MEMOP:      latehalf[0] = operands[0];      addreg0 = XEXP (operands[0],0);      break;      /* if we're dealing with a push instruction, just leave */      /* the operand alone since it auto-increments.		*/    case PUSHOP:      latehalf[0] = operands[0];      break;      /* YUCK! Indexed addressing!! If the address is considered   */      /* offsettable, go use the offset in the high part. Otherwise */      /* find what exactly is being added to the mutiplication. If */      /* it's a mem reference, increment that with the high part   */      /* being unchanged to cause the shift. If it's a reg, do the */      /* same. If you can't identify it, abort. Remember that the  */      /* shift register was already set during identification.     */    case INDOP:      if (offsettable_memref_p (operands[0]))	{	  latehalf[0] = adj_offsettable_operand (operands[0],4);	  break;	}      latehalf[0] = operands[0];      temp0 = XEXP (XEXP (operands[0],0),0);      if (GET_CODE (temp0) == MULT)	{	  temp1 = temp0;	  temp0 = XEXP (XEXP (operands[0],0),1);	}      else	{	  temp1 = XEXP (XEXP (operands[0],0),1);	  if (GET_CODE (temp1) != MULT)	    abort ();	}      if (GET_CODE (temp0) == MEM)	addreg0 = temp0;      else if (GET_CODE (temp0) == REG)	addreg0 = temp0;      else	abort ();      break;      /* if we don't know the operand type, print a friendly  */      /* little error message...   8-)			*/    case RNDOP:      default:      abort ();    }  /* do the same setup for operand one */  switch (optype1)    {    case REGOP:      latehalf[1] = gen_rtx (REG,SImode,REGNO (operands[1])+1);      break;    case OFFSOP:      latehalf[1] = adj_offsettable_operand (operands[1], 4);      break;    case MEMOP:      latehalf[1] = operands[1];      addreg1 = XEXP (operands[1],0);      break;    case POPOP:      latehalf[1] = operands[1];      break;    case INDOP:      if (offsettable_memref_p (operands[1]))	{	  latehalf[1] = adj_offsettable_operand (operands[1],4);	  break;	}      latehalf[1] = operands[1];      temp0 = XEXP (XEXP (operands[1],0),0);      if (GET_CODE (temp0) == MULT)	{	  temp1 = temp0;	  temp0 = XEXP (XEXP (operands[1],0),1);	}      else	{	  temp1 = XEXP (XEXP (operands[1],0),1);	  if (GET_CODE (temp1) != MULT)	    abort ();	}      if (GET_CODE (temp0) == MEM)	addreg1 = temp0;      else if (GET_CODE (temp0) == REG)	addreg1 = temp0;      else	abort ();      break;    case CNSTOP:      /* Since this machine is big-endian,	 the late half must be the low-order word for an integer,	 or the latter word for a float.  */      if (GET_CODE (operands[1]) == CONST_DOUBLE)	{	  if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_FLOAT)	    {	      latehalf[1] = gen_rtx (CONST_INT, VOIDmode,				     CONST_DOUBLE_HIGH (operands[1]));	      operands[1] = gen_rtx (CONST_INT, VOIDmode,				     CONST_DOUBLE_LOW (operands[1]));	    }	  else	    {	      latehalf[1] = gen_rtx (CONST_INT, VOIDmode,				     CONST_DOUBLE_LOW (operands[1]));	      operands[1] = gen_rtx (CONST_INT, VOIDmode,				     CONST_DOUBLE_HIGH (operands[1]));	    }	}      else	{	  latehalf[1] = operands[1];	  operands[1] = const0_rtx;	}      break;    case RNDOP:    default:      abort ();    }  /* double the register used for shifting in both of the operands */  /* but make sure the same register isn't doubled twice!	   */  if (shftreg0 && shftreg1 && rtx_equal_p (shftreg0, shftreg1))    output_asm_insn ("addl2 %0,%0", &shftreg0);  else    {      if (shftreg0)	output_asm_insn ("addl2 %0,%0", &shftreg0);      if (shftreg1)	output_asm_insn ("addl2 %0,%0", &shftreg1);    }  /* if the destination is a register and that register is needed in  */  /* the source addressing mode, swap the order of the moves since we */  /* don't want this destroyed til last. If both regs are used, not   */  /* much we can do, so abort. If these becomes a problem, maybe we   */  /* can do it on the stack?					      */  if (GET_CODE (operands[0])==REG && regisused (operands[1],REGNO (operands[0])))    if (regisused (latehalf[1],REGNO (latehalf[0])))      8;    else      dohighfirst++;  /* if we're pushing, do the high address part first. */  if (dohighfirst)    {      if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))	output_asm_insn ("addl2 $4,%0", &addreg0);      else	{	  if (addreg0)	    output_asm_insn ("addl2 $4,%0", &addreg0);	  if (addreg1)	    output_asm_insn ("addl2 $4,%0", &addreg1);	}      output_asm_insn (singlemove_string (latehalf), latehalf);      if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))	output_asm_insn ("subl2 $4,%0", &addreg0);      else	{	  if (addreg0)	    output_asm_insn ("subl2 $4,%0", &addreg0);	  if (addreg1)	    output_asm_insn ("subl2 $4,%0", &addreg1);	}      return singlemove_string (operands);    }  output_asm_insn (singlemove_string (operands), operands);  if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))    output_asm_insn ("addl2 $4,%0", &addreg0);  else    {      if (addreg0)	output_asm_insn ("addl2 $4,%0", &addreg0);      if (addreg1)	output_asm_insn ("addl2 $4,%0", &addreg1);    }  output_asm_insn (singlemove_string (latehalf), latehalf);  if (addreg0 && addreg1 && (rtx_equal_p (addreg0,addreg1)))    output_asm_insn ("subl2 $4,%0", &addreg0);  else    {      if (addreg0)	output_asm_insn ("subl2 $4,%0", &addreg0);      if (addreg1)	output_asm_insn ("subl2 $4,%0", &addreg1);    }  if (shftreg0 && shftreg1 && (rtx_equal_p (shftreg0,shftreg1)))    output_asm_insn ("shar $1,%0,%0", &shftreg0);  else    {      if (shftreg0)	output_asm_insn ("shar $1,%0,%0", &shftreg0);      if (shftreg1)	output_asm_insn ("shar $1,%0,%0", &shftreg1);    }  return "";}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -