📄 brsola.m
字号:
function [sol, it_hist, ierr] = brsola(x,tol,parms)
% Broyden's Method solver, globally convergent
% solver for f(x) = 0, Armijo rule, one vector storage
%
% C. T. Kelley, June 29, 1994
%
% This code comes with no guarantee or warranty of any kind.
%
% function [sol, it_hist, ierr] = brsola(x,f,tol,partolms)
%
debug=0;
% initialize it_hist, ierr, and set the iteration parameters
%
%
ierr = 0; maxit=40; maxdim=39;
it_histx=zeros(maxit,3);
maxarm=10;
%
if nargin == 4
maxit=parms(1); maxdim=parms(2)-1;
end
rtol=tol(2);
atol=tol(1);
n = length(x);
fnrm=1; itc=0; nbroy=0;
%
% evaluate f at the initial iterate
% compute the stop tolerance
%
f0=feval('fx',x);
fc=f0;
fnrm=norm(f0)/sqrt(n);
it_hist(itc+1)=fnrm;
it_histx(itc+1,1)=fnrm; it_histx(itc+1,2)=0; it_histx(itc+1,3)=0;
fnrmo=1;
stop_tol=atol + rtol*fnrm;
outstat(itc+1, :) = [itc fnrm 0 0];
%
% terminate on entry?
%
if fnrm < stop_tol
sol=x;
return
end
%
% initialize the iteration history storage matrices
%
stp=zeros(n,maxdim);
stp_nrm=zeros(maxdim,1);
lam_rec=ones(maxdim,1);
%
% Set the initial step to -F, compute the step norm
%
lambda=1;
stp(:,1) = -fc;
stp_nrm(1)=stp(:,1)'*stp(:,1);
%
% main iteration loop
%
while(itc < maxit)
%
nbroy=nbroy+1;
%
% keep track of successive residual norms and
% the iteration counter (itc)
%
fnrmo=fnrm; itc=itc+1;
%
% compute the new point, test for termination before
% adding to iteration history
%
xold=x; lambda=1; iarm=0; lrat=.5; alpha=1.d-4;
x = x + stp(:,nbroy);
fc=feval('fx',x);
fnrm=norm(fc)/sqrt(n);
ff0=fnrmo*fnrmo; ffc=fnrm*fnrm; lamc=lambda;
%
%
% Line search, we assume that the Broyden direction is an
% ineact Newton direction. If the line search fails to
% find sufficient decrease after maxarm steplength reductions
% brsola returns with failure.
%
% Three-point parabolic line search
%
while fnrm >= (1 - lambda*alpha)*fnrmo & iarm < maxarm
% lambda=lambda*lrat;
if iarm==0
lambda=lambda*lrat;
else
lambda=parab3p(lamc, lamm, ff0, ffc, ffm);
end
lamm=lamc; ffm=ffc; lamc=lambda;
x = xold + lambda*stp(:,nbroy);
fc=feval('fx',x);
fnrm=norm(fc)/sqrt(n);
ffc=fnrm*fnrm;
iarm=iarm+1;
end
%
% set error flag and return on failure of the line search
%
if iarm == maxarm
disp('Line search failure in brsola ')
ierr=2;
it_hist=it_histx(1:itc+1,:);
sol=xold;
return;
end
%
% How many function evaluations did this iteration require?
%
it_histx(itc+1,1)=fnrm;
it_histx(itc+1,2)=it_histx(itc,2)+iarm+1;
if(itc == 1) it_histx(itc+1,2) = it_histx(itc+1,2)+1; end;
it_histx(itc+1,3)=iarm;
%
% terminate?
%
if fnrm < stop_tol
sol=x;
rat=fnrm/fnrmo;
outstat(itc+1, :) = [itc fnrm iarm rat];
it_hist=it_histx(1:itc+1,:);
% it_hist(itc+1)=fnrm;
if debug==1
disp(outstat(itc+1,:))
end
return
end
%
%
% modify the step and step norm if needed to reflect the line
% search
%
lam_rec(nbroy)=lambda;
if lambda ~= 1
stp(:,nbroy)=lambda*stp(:,nbroy);
stp_nrm(nbroy)=lambda*lambda*stp_nrm(nbroy);
end
%
%
% it_hist(itc+1)=fnrm;
rat=fnrm/fnrmo;
outstat(itc+1, :) = [itc fnrm iarm rat];
if debug==1
disp(outstat(itc+1,:))
end
%
%
% if there's room, compute the next search direction and step norm and
% add to the iteration history
%
if nbroy < maxdim+1
z=-fc;
if nbroy > 1
for kbr = 1:nbroy-1
ztmp=stp(:,kbr+1)/lam_rec(kbr+1);
ztmp=ztmp+(1 - 1/lam_rec(kbr))*stp(:,kbr);
ztmp=ztmp*lam_rec(kbr);
z=z+ztmp*((stp(:,kbr)'*z)/stp_nrm(kbr));
end
end
%
% store the new search direction and its norm
%
a2=-lam_rec(nbroy)/stp_nrm(nbroy);
a1=1 - lam_rec(nbroy);
zz=stp(:,nbroy)'*z;
a3=a1*zz/stp_nrm(nbroy);
a4=1+a2*zz;
stp(:,nbroy+1)=(z-a3*stp(:,nbroy))/a4;
stp_nrm(nbroy+1)=stp(:,nbroy+1)'*stp(:,nbroy+1);
%
%
%
else
%
% out of room, time to restart
%
stp(:,1)=-fc;
stp_nrm(1)=stp(:,1)'*stp(:,1);
nbroy=0;
%
%
%
end
%
% end while
end
disp(['iterration number: ',num2str(itc)]);
%
% We're not supposed to be here, we've taken the maximum
% number of iterations and not terminated.
%
sol=x;
it_hist=it_histx(1:itc+1,:);
ierr=1;
if debug==1
disp(outstat)
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -