⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simkd_source_doc.html

📁 kd树的最快实现算法
💻 HTML
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html>  <head>    <meta http-equiv="content-type"      content="text/html; charset=ISO-8859-1">    <title>Simple kd-Trees Source Code Documentation</title>  </head>  <body>    <a name="top"></a>    <table width=100%><tr>      <td><a href="http://www.autonlab.org">www.autonlab.org</a></td>      <td align=right><small>ver. 2004-06-18</small></td>    </table>    <hr>    <table border=1 cellpadding=6 width=100% bgcolor="#bad1d"><td>      <h3><center>Simple kd-Trees Source Code Documentation</center></h3>    </table><p><!-- --------------------------------------------------------- --><a name="overview"></a><p><p>This package contains source code for the simkd kd-tree implementation. If you are not interested in the source code for this algorithm, please see the software link 'Simple kd-Trees' which contains binary versions of this algorithm with a nice user interface.</p><p>This program constructs a kd-tree from the contents of an input dataset of k-dimensional vectors, and then performs nearest neighbor searches within the kd-tree using query points from a query dataset.  The search can be either for K nearest neighbors, or for all neighbors within some range (radius) of the query point.  (Annoying note: the k's in kd-tree and k-nearest neighbor are not the same.) </p><table width=100% bgcolor="#bad1d"><td><h3>Documentation</h3></table><p>Source code readme: <a href="readme.txt">readme.txt</a><p>Documentation for the related <a href="../169">'Simple kd-Trees'</a> software:<a href="../169/simkd_applic_doc.html">simkd_applic_doc.html</a><p><!-- --------------------------------------------------------- -->  </body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -