📄 nonlinear_amp.cpp
字号:
//
// File = nonlinear_amp.cpp
//
#include <stdlib.h>
#include <fstream>
#include <strstream>
#include "parmfile.h"
#include "nonlinear_amp.h"
#include "model_graph.h"
extern ParmFile *ParmInput;
//======================================================
NonlinearAmplifier::NonlinearAmplifier(
char* instance_name,
PracSimModel* outer_model,
Signal< complex<float> >* in_sig,
Signal< complex<float> >* out_sig )
:PracSimModel(instance_name,
outer_model)
{
MODEL_NAME(NonlinearAmplifier);
// Read model config parms
OPEN_PARM_BLOCK;
GET_DOUBLE_PARM(Output_Power_Scale_Factor);
GET_DOUBLE_PARM(Phase_Scale_Factor);
GET_DOUBLE_PARM(Anticipated_Input_Power);
GET_DOUBLE_PARM(Operating_Point);
GET_DOUBLE_PARM(Agc_Time_Constant);
Input_Power_Scale_Factor =
float(Operating_Point/Anticipated_Input_Power);
Am_Am_Fname = new char[64];
strcpy(Am_Am_Fname, "\0");
GET_STRING_PARM(Am_Am_Fname);
Am_Pm_Fname = new char[64];
strcpy(Am_Pm_Fname, "\0");
GET_STRING_PARM(Am_Pm_Fname);
// Connect input and output signals
In_Sig = in_sig;
Out_Sig = out_sig;
MAKE_OUTPUT( Out_Sig );
MAKE_INPUT( In_Sig );
Am_Am_Curve = new SampledCurve(Am_Am_Fname);
Am_Pm_Curve = new SampledCurve(Am_Pm_Fname);
}
//======================================================
void NonlinearAmplifier::Initialize(void)
{
double samp_intvl = Out_Sig->GetSampIntvl();
Out_Avg_Block_Size = Out_Sig->GetBlockSize();
}
//======================================================
NonlinearAmplifier::~NonlinearAmplifier( void ){ };
//======================================================
int NonlinearAmplifier::Execute()
{
complex<float> *out_sig_ptr, out_sig;
complex<float> *in_sig_ptr, in_sig;
complex<float> agc_in_sig;
float power, power_out;
float input_phase;
double phase_shift;
double amplitude;
double phase_out;
double sum_in, sum_out;
double amp_sqrd;
double avg_power_in, avg_power_out;
int block_size, is;
block_size = In_Sig->GetValidBlockSize();
Out_Sig->SetValidBlockSize(block_size);
//-------------------------------------------------
out_sig_ptr = GET_OUTPUT_PTR( Out_Sig );
in_sig_ptr = GET_INPUT_PTR( In_Sig );
block_size = In_Sig->GetValidBlockSize();
Out_Sig->SetValidBlockSize(block_size);
sum_in = 0.0;
sum_out = 0.0;
for(is=0; is<block_size; is++){
in_sig = *in_sig_ptr++;
agc_in_sig = in_sig;
amp_sqrd = std::norm(agc_in_sig);
sum_in += amp_sqrd;
power = float(0.5 * Input_Power_Scale_Factor *
amp_sqrd);
if(power == 0.0){
input_phase = 0.0;
}
else{
input_phase = std::arg(agc_in_sig);
}
power_out = float(Output_Power_Scale_Factor *
Am_Am_Curve->GetValue(power));
sum_out += power_out;
phase_shift = Am_Pm_Curve->GetValue(power);
amplitude = sqrt(2.0*power_out);
phase_out = input_phase +
Phase_Scale_Factor*phase_shift;
out_sig = complex<float>(
float(amplitude*cos(phase_out)),
float(amplitude*sin(phase_out)));
*out_sig_ptr++ = out_sig;
}
avg_power_out = sum_out/block_size;
avg_power_in = sum_in/block_size/2;
BasicResults
<< "In NonlinearAmplifier avg input power = "
<< avg_power_in << endl;
BasicResults
<< " avg output power = "
<< avg_power_out << endl;
return(_MES_AOK);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -