⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 人体组织sc=10.m

📁 利用rbf神经网络对人体组织药业灌注这个系统的一个学习
💻 M
字号:

%RBF法建模
%标准化的建模数据集
m_data=[0 0
0.06977	0.069713409
0.13952	0.139067795
0.20928	0.207755664
0.27904	0.275432908
0.3488	0.341770314
0.41856	0.406445183
0.48832	0.469142906
0.55808	0.52955849
0.62784	0.587398046
0.6976	0.642380212
0.76736	0.694237531
0.83712	0.742717742
0.872	0.765617061
0.94176	0.808594876
1.01152	0.847639294
1.08128	0.882560385
1.15104	0.913188273
1.2208	0.939373972
1.29056	0.960990101
1.36032	0.977931509
1.43008	0.990115784
1.49984	0.997483656
1.5696	0.999999284
1.63936	0.997650432
1.70912	0.990448525
1.77888	0.978428596
1.84864	0.961649117
1.9184	0.94019171
1.98816	0.914160756
2.05792	0.883682881
2.12768	0.848906344
2.19744	0.810000316
2.2672	0.767154054
2.33696	0.720575982
2.40672	0.670492681
2.47648	0.617147778
2.54624	0.560800769
2.616	0.501725754
2.68576	0.440375307
2.75552	0.376553054
2.82528	0.31106427
2.89504	0.244062319
2.9648	0.17587313
3.03456	0.10682841
3.10432	0.037264024
3.17408	-0.032481632
3.27872	-0.136697995
3.34848	-0.205414623
3.41824	-0.273132015

];
X=m_data(:,1);T=m_data(:,2);T=T';
%随机选取中心
C=X;
%定义delta平方为样本各点的协方差之和
delta=cov(X');
delta=sum(delta);
%隐含层输出H
for i=1:1:50
  for j=1:1:50
     H(i,j)=((X(i,:)-C(j,:)))*((X(i,:)-C(j,:))');
     H(i,j)=exp(-H(i,j)./delta);
  end
end
p=H;
%建模
%
err_goal=0.01;
sc=10;
net=newrb(p,T,err_goal,sc,200,1);
Y=sim(net,p);
E=T-Y;
SSE=sse(E);
MSE=mse(E);
%拟合图
figure;
plot(T);
hold on;
plot(Y,'r:');
title('RBF网络人体组织建模拟合曲线图');
legend('理想值','实际值');
ylabel('输出样本点');
xlabel('输入样本点');
axis([1,50,-1,1]);
%RBF法预测
%标准化的预测数据集
  m_data=[0 0
      0.03488	0.034872928
0.10466	0.104469035
0.1744	0.17351727
0.2441	0.241683103
0.3139	0.308770408
0.38368	0.374335436
0.45344	0.438060492
0.5232	0.49965461
0.59296	0.558818166
0.66272	0.61526336
0.73248	0.668715615
0.80224	0.718914913
0.90688	0.787585013
0.97664	0.82862109
1.0464	0.865626353
1.11616	0.898420789
1.18592	0.926844872
1.25568	0.950760333
1.32544	0.970050834
1.3952	0.984622538
1.46496	0.994404562
1.53472	0.99934932
1.60448	0.999432759
1.67424	0.994654472
1.744	0.985037705
1.81376	0.970629237
1.88352	0.951499158
1.95328	0.927740527
2.02404	0.899031482
2.0928	0.866821853
2.16256	0.829958148
2.23232	0.789057125
2.30208	0.744317746
2.37189	0.69592174
2.4416	0.644212068
2.51136	0.589332732
2.58112	0.531586597
2.65088	0.471254566
2.72064	0.408630125
2.7904	0.34401791
2.86016	0.277732224
2.92992	0.210095514
2.99968	0.141436798
3.06944	0.072090065
3.1392	0.002392651
3.20896	-0.067316402
3.3136	-0.171160417
3.38336	-0.239418945
3.45312	-0.306512823
];
X1=m_data(:,1);T1=m_data(:,2);T1=T1';
%隐含层输出H
for i=1:1:50
  for j=1:1:50
     H1(i,j)=((X1(i,:)-C(j,:)))*((X1(i,:)-C(j,:))');
     H1(i,j)=exp(-H1(i,j)./delta);
  end
end
p1=H1;
Y1=sim(net,p1);
E1=T1-Y1;
SSE=sse(E1);
MSE=mse(E1);
E2=Y-Y1
%拟合图
figure;
plot(T1);
hold on;
plot(Y1,'r:');
title('RBF网络人体组织软测量曲线图');
legend('理想值','实际值');
ylabel('输出样本点');
xlabel('输入样本点');
axis([1,50,-1,1]);
figure;
plot(E);
title('RBF网络人体组织建模误差图');
figure;
plot(E1);
title('RBF网络人体组织软测量误差图');










⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -