📄 kpca_toy.m
字号:
% Kernel PCA toy example for k(x,y)=exp(-||x-y||^2/rbf_var), cf. Fig. 4 in % @article{SchSmoMue98,% author = "B.~{Sch\"olkopf} and A.~Smola and K.-R.~{M\"uller}",% title = "Nonlinear component analysis as a kernel Eigenvalue problem",% journal = {Neural Computation},% volume = 10,% issue = 5,% pages = "1299 -- 1319",% year = 1998}% This file can be downloaded from http://www.kernel-machines.org.% Last modified: 4 July 2003% parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%rbf_var = 0.1;xnum = 4;ynum = 2;max_ev = xnum*ynum;% (extract features from the first <max_ev> Eigenvectors)x_test_num = 15;y_test_num = 15;cluster_pos = [-0.5 -0.2; 0 0.6; 0.5 0];cluster_size = 30;% generate a toy data set%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%num_clusters = size(cluster_pos,1);train_num = num_clusters*cluster_size;patterns = zeros(train_num, 2);range = 1;randn('seed', 0);for i=1:num_clusters, patterns((i-1)*cluster_size+1:i*cluster_size,1) = cluster_pos(i,1)+0.1*randn(cluster_size,1); patterns((i-1)*cluster_size+1:i*cluster_size,2) = cluster_pos(i,2)+0.1*randn(cluster_size,1);endtest_num = x_test_num*y_test_num;x_range = -range:(2*range/(x_test_num - 1)):range;y_offset = 0.5;y_range = -range+ y_offset:(2*range/(y_test_num - 1)):range+ y_offset;[xs, ys] = meshgrid(x_range, y_range);test_patterns(:, 1) = xs(:);test_patterns(:, 2) = ys(:);cov_size = train_num; % use all patterns to compute the covariance matrix% carry out Kernel PCA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i=1:cov_size, for j=i:cov_size, K(i,j) = exp(-norm(patterns(i,:)-patterns(j,:))^2/rbf_var); K(j,i) = K(i,j); endendunit = ones(cov_size, cov_size)/cov_size;% centering in feature space!K_n = K - unit*K - K*unit + unit*K*unit;[evecs,evals] = eig(K_n);evals = real(diag(evals));for i=1:cov_size, evecs(:,i) = evecs(:,i)/(sqrt(evals(i)));end% extract features%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% do not need the following here - only need test point features%unit_train = ones(train_num,cov_size)/cov_size;%for i=1:train_num,% for j=1:cov_size,% K_train(i,j) = exp(-norm(patterns(i,:)-patterns(j,:))^2/rbf_var);% end%end%K_train_n = K_train - unit_train*K - K_train*unit + unit_train*K*unit;%features = zeros(train_num, max_ev);%features = K_train_n * evecs(:,1:max_ev);unit_test = ones(test_num,cov_size)/cov_size;K_test = zeros(test_num,cov_size);for i=1:test_num, for j=1:cov_size, K_test(i,j) = exp(-norm(test_patterns(i,:)-patterns(j,:))^2/rbf_var); endendK_test_n = K_test - unit_test*K - K_test*unit + unit_test*K*unit;test_features = zeros(test_num, max_ev);test_features = K_test_n * evecs(:,1:max_ev);% plot it%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%figure(1); clffor n = 1:max_ev, subplot(ynum, xnum, n); axis([-range range -range+y_offset range+y_offset]); imag = reshape(test_features(:,n), y_test_num, x_test_num); axis('xy') colormap(gray); hold on; pcolor(x_range, y_range, imag); shading interp contour(x_range, y_range, imag, 9, 'b'); plot(patterns(:,1), patterns(:,2), 'r.') text(-1,1.65,sprintf('Eigenvalue=%4.3f', evals(n))); hold off;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -