📄 jpegencoder.java
字号:
System.out.println("IO Error: " + e.getMessage()); } } void WriteArray(byte[] data, BufferedOutputStream out) { int i; int length; try { length = (((int) (data[2] & 0xFF)) << 8) + (int) (data[3] & 0xFF) + 2; out.write(data, 0, length); } catch (IOException e) { System.out.println("IO Error: " + e.getMessage()); } }}// This class incorporates quality scaling as implemented in the JPEG-6a// library./** DCT - A Java implementation of the Discreet Cosine Transform*/class DCT { /** * DCT Block Size - default 8 */ public int N = 8; /** * Image Quality (0-100) - default 80 (good image / good compression) */ public int QUALITY = 80; public Object[] quantum = new Object[2]; public Object[] Divisors = new Object[2]; /** * Quantitization Matrix for luminace. */ public int[] quantum_luminance = new int[N * N]; public double[] DivisorsLuminance = new double[N * N]; /** * Quantitization Matrix for chrominance. */ public int[] quantum_chrominance = new int[N * N]; public double[] DivisorsChrominance = new double[N * N]; /** * Constructs a new DCT object. Initializes the cosine transform matrix * these are used when computing the DCT and it's inverse. This also * initializes the run length counters and the ZigZag sequence. Note that * the image quality can be worse than 25 however the image will be * extemely pixelated, usually to a block size of N. * * @param QUALITY The quality of the image (0 worst - 100 best) * */ public DCT(int QUALITY) { initMatrix(QUALITY); } /* * This method sets up the quantization matrix for luminance and * chrominance using the Quality parameter. */ private void initMatrix(int quality) { double[] AANscaleFactor = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; int i; int j; int index; int Quality; int temp; // converting quality setting to that specified in the jpeg_quality_scaling // method in the IJG Jpeg-6a C libraries Quality = quality; if (Quality <= 0) { Quality = 1; } if (Quality > 100) { Quality = 100; } if (Quality < 50) { Quality = 5000 / Quality; } else { Quality = 200 - (Quality * 2); } // Creating the luminance matrix quantum_luminance[0] = 16; quantum_luminance[1] = 11; quantum_luminance[2] = 10; quantum_luminance[3] = 16; quantum_luminance[4] = 24; quantum_luminance[5] = 40; quantum_luminance[6] = 51; quantum_luminance[7] = 61; quantum_luminance[8] = 12; quantum_luminance[9] = 12; quantum_luminance[10] = 14; quantum_luminance[11] = 19; quantum_luminance[12] = 26; quantum_luminance[13] = 58; quantum_luminance[14] = 60; quantum_luminance[15] = 55; quantum_luminance[16] = 14; quantum_luminance[17] = 13; quantum_luminance[18] = 16; quantum_luminance[19] = 24; quantum_luminance[20] = 40; quantum_luminance[21] = 57; quantum_luminance[22] = 69; quantum_luminance[23] = 56; quantum_luminance[24] = 14; quantum_luminance[25] = 17; quantum_luminance[26] = 22; quantum_luminance[27] = 29; quantum_luminance[28] = 51; quantum_luminance[29] = 87; quantum_luminance[30] = 80; quantum_luminance[31] = 62; quantum_luminance[32] = 18; quantum_luminance[33] = 22; quantum_luminance[34] = 37; quantum_luminance[35] = 56; quantum_luminance[36] = 68; quantum_luminance[37] = 109; quantum_luminance[38] = 103; quantum_luminance[39] = 77; quantum_luminance[40] = 24; quantum_luminance[41] = 35; quantum_luminance[42] = 55; quantum_luminance[43] = 64; quantum_luminance[44] = 81; quantum_luminance[45] = 104; quantum_luminance[46] = 113; quantum_luminance[47] = 92; quantum_luminance[48] = 49; quantum_luminance[49] = 64; quantum_luminance[50] = 78; quantum_luminance[51] = 87; quantum_luminance[52] = 103; quantum_luminance[53] = 121; quantum_luminance[54] = 120; quantum_luminance[55] = 101; quantum_luminance[56] = 72; quantum_luminance[57] = 92; quantum_luminance[58] = 95; quantum_luminance[59] = 98; quantum_luminance[60] = 112; quantum_luminance[61] = 100; quantum_luminance[62] = 103; quantum_luminance[63] = 99; for (j = 0; j < 64; j++) { temp = ((quantum_luminance[j] * Quality) + 50) / 100; if (temp <= 0) { temp = 1; } if (temp > 255) { temp = 255; } quantum_luminance[j] = temp; } index = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { // The divisors for the LL&M method (the slow integer method used in // jpeg 6a library). This method is currently (04/04/98) incompletely // implemented. // DivisorsLuminance[index] = ((double) quantum_luminance[index]) << 3; // The divisors for the AAN method (the float method used in jpeg 6a library. DivisorsLuminance[index] = (double) ((double) 1.0 / ((double) quantum_luminance[index] * AANscaleFactor[i] * AANscaleFactor[j] * (double) 8.0)); index++; } } // Creating the chrominance matrix quantum_chrominance[0] = 17; quantum_chrominance[1] = 18; quantum_chrominance[2] = 24; quantum_chrominance[3] = 47; quantum_chrominance[4] = 99; quantum_chrominance[5] = 99; quantum_chrominance[6] = 99; quantum_chrominance[7] = 99; quantum_chrominance[8] = 18; quantum_chrominance[9] = 21; quantum_chrominance[10] = 26; quantum_chrominance[11] = 66; quantum_chrominance[12] = 99; quantum_chrominance[13] = 99; quantum_chrominance[14] = 99; quantum_chrominance[15] = 99; quantum_chrominance[16] = 24; quantum_chrominance[17] = 26; quantum_chrominance[18] = 56; quantum_chrominance[19] = 99; quantum_chrominance[20] = 99; quantum_chrominance[21] = 99; quantum_chrominance[22] = 99; quantum_chrominance[23] = 99; quantum_chrominance[24] = 47; quantum_chrominance[25] = 66; quantum_chrominance[26] = 99; quantum_chrominance[27] = 99; quantum_chrominance[28] = 99; quantum_chrominance[29] = 99; quantum_chrominance[30] = 99; quantum_chrominance[31] = 99; quantum_chrominance[32] = 99; quantum_chrominance[33] = 99; quantum_chrominance[34] = 99; quantum_chrominance[35] = 99; quantum_chrominance[36] = 99; quantum_chrominance[37] = 99; quantum_chrominance[38] = 99; quantum_chrominance[39] = 99; quantum_chrominance[40] = 99; quantum_chrominance[41] = 99; quantum_chrominance[42] = 99; quantum_chrominance[43] = 99; quantum_chrominance[44] = 99; quantum_chrominance[45] = 99; quantum_chrominance[46] = 99; quantum_chrominance[47] = 99; quantum_chrominance[48] = 99; quantum_chrominance[49] = 99; quantum_chrominance[50] = 99; quantum_chrominance[51] = 99; quantum_chrominance[52] = 99; quantum_chrominance[53] = 99; quantum_chrominance[54] = 99; quantum_chrominance[55] = 99; quantum_chrominance[56] = 99; quantum_chrominance[57] = 99; quantum_chrominance[58] = 99; quantum_chrominance[59] = 99; quantum_chrominance[60] = 99; quantum_chrominance[61] = 99; quantum_chrominance[62] = 99; quantum_chrominance[63] = 99; for (j = 0; j < 64; j++) { temp = ((quantum_chrominance[j] * Quality) + 50) / 100; if (temp <= 0) { temp = 1; } if (temp >= 255) { temp = 255; } quantum_chrominance[j] = temp; } index = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { // The divisors for the LL&M method (the slow integer method used in // jpeg 6a library). This method is currently (04/04/98) incompletely // implemented. // DivisorsChrominance[index] = ((double) quantum_chrominance[index]) << 3; // The divisors for the AAN method (the float method used in jpeg 6a library. DivisorsChrominance[index] = (double) ((double) 1.0 / ((double) quantum_chrominance[index] * AANscaleFactor[i] * AANscaleFactor[j] * (double) 8.0)); index++; } } // quantum and Divisors are objects used to hold the appropriate matices quantum[0] = quantum_luminance; Divisors[0] = DivisorsLuminance; quantum[1] = quantum_chrominance; Divisors[1] = DivisorsChrominance; } /* * This method preforms forward DCT on a block of image data using * the literal method specified for a 2-D Discrete Cosine Transform. * It is included as a curiosity and can give you an idea of the * difference in the compression result (the resulting image quality) * by comparing its output to the output of the AAN method below. * It is ridiculously inefficient. */ // For now the final output is unusable. The associated quantization step // needs some tweaking. If you get this part working, please let me know. public double[][] forwardDCTExtreme(float[][] input) { double[][] output = new double[N][N]; double tmp0; double tmp1; double tmp2; double tmp3; double tmp4; double tmp5; double tmp6; double tmp7; double tmp10; double tmp11; double tmp12; double tmp13; double z1; double z2; double z3; double z4; double z5; double z11; double z13; int i; int j; int v; int u; int x; int y; for (v = 0; v < 8; v++) { for (u = 0; u < 8; u++) { for (x = 0; x < 8; x++) { for (y = 0; y < 8; y++) { output[v][u] += (((double) input[x][y]) * Math.cos(((double) ((2 * x) + 1) * (double) u * Math.PI) / (double) 16) * Math.cos(((double) ((2 * y) + 1) * (double) v * Math.PI) / (double) 16)); } } output[v][u] *= ((double) (0.25) * ((u == 0) ? ((double) 1.0 / Math.sqrt(2)) : (double) 1.0) * ((v == 0) ? ((double) 1.0 / Math.sqrt(2)) : (double) 1.0)); } } return output; } /* * This method preforms a DCT on a block of image data using the AAN * method as implemented in the IJG Jpeg-6a library. */ public double[][] forwardDCT(float[][] input) { double[][] output = new double[N][N]; double tmp0; double tmp1; double tmp2; double tmp3; double tmp4; double tmp5; double tmp6; double tmp7; double tmp10; double tmp11; double tmp12; double tmp13; double z1; double z2; double z3; double z4; double z5; double z11; double z13;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -