⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gfpderivtest.cpp

📁 心电图小波零树压缩演算法的研究
💻 CPP
字号:
/*  *********************************************************************  *                                                                   *  *               Galois Field Arithmetic Library                     *  * Prototype: Galois Field Polynomial Derivative Test                *  * Version: 0.0.1                                                    *  * Author: Arash Partow - 2000                                       *  * URL: http://www.partow.net/projects/galois/index.html             *  *                                                                   *  * Copyright Notice:                                                 *  * Free use of this library is permitted under the guidelines and    *  * in accordance with the most current version of the Common Public  *  * License.                                                          *  * http://www.opensource.org/licenses/cpl.php                        *  *                                                                   *  **********************************************************************//*   This is a test of the formal derivative capabilities of the GaloisFieldPolynomial   class. The test is based upon a problem in the book: The Art of Error Correcting   Coding.   On page 70 (Non-binary BCH codes: Reed-Solomon) it is assumed the formal derivative   of the polynomial phi is 1.   Where phi(x) = 1x^0 + 1x^1 + alpha^5x^2 + 0x^3 + alpha^5x^4   The code below demonstrates this fact.*/#include <iostream>#include <stdlib.h>#include <stdio.h>#include "GaloisField.h"#include "GaloisFieldElement.h"#include "GaloisFieldPolynomial.h"/*   p(x) = 1x^4+1x^3+0x^2+0x^1+1x^0          1    1    0    0    1*/unsigned int poly[5] = {1,0,0,1,1};/*  A Galois Field of type GF(2^8)*/galois::GaloisField galois_field(4,poly);int main(int argc, char *argv[]){   std::cout << "Galois Field: " << std::endl << galois_field << std::endl;   galois::GaloisFieldElement gfe[5] = {                                         galois::GaloisFieldElement(&galois_field,galois_field.alpha(1)),                                         galois::GaloisFieldElement(&galois_field,galois_field.alpha(1)),                                         galois::GaloisFieldElement(&galois_field,galois_field.alpha(5)),                                         galois::GaloisFieldElement(&galois_field,                    0),                                         galois::GaloisFieldElement(&galois_field,galois_field.alpha(5)),                                       };   galois::GaloisFieldPolynomial gfp(&galois_field,4,gfe);   std::cout << "p(x)  = " << gfp              << std::endl;   std::cout << "p'(x) = " << gfp.derivative() << std::endl;   exit(EXIT_SUCCESS);   return true;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -