📄 frustum.cpp
字号:
//***********************************************************************//
// //
// - "Talk to me like I'm a 3 year old!" Programming Lessons - //
// //
// $Author: DigiBen DigiBen@GameTutorials.com //
// //
// $Program: BSP Loader 6 //
// //
// $Description: This adds gravity, jumping and walking up steps //
// //
// $Date: 9/30/04 //
// //
//***********************************************************************//
#include "Frustum.h"
// This is the index in our selection buffer that has the closet object ID clicked
#define FIRST_OBJECT_ID 3
// We create an enum of the sides so we don't have to call each side 0 or 1.
// This way it makes it more understandable and readable when dealing with frustum sides.
enum FrustumSide
{
RIGHT = 0, // The RIGHT side of the frustum
LEFT = 1, // The LEFT side of the frustum
BOTTOM = 2, // The BOTTOM side of the frustum
TOP = 3, // The TOP side of the frustum
BACK = 4, // The BACK side of the frustum
FRONT = 5 // The FRONT side of the frustum
};
// Like above, instead of saying a number for the ABC and D of the plane, we
// want to be more descriptive.
enum PlaneData
{
A = 0, // The X value of the plane's normal
B = 1, // The Y value of the plane's normal
C = 2, // The Z value of the plane's normal
D = 3 // The distance the plane is from the origin
};
///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This normalizes a plane (A side) from a given frustum.
/////
///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void NormalizePlane(float frustum[6][4], int side)
{
// Here we calculate the magnitude of the normal to the plane (point A B C)
// Remember that (A, B, C) is that same thing as the normal's (X, Y, Z).
// To calculate magnitude you use the equation: magnitude = sqrt( x^2 + y^2 + z^2)
float magnitude = (float)sqrt( frustum[side][A] * frustum[side][A] +
frustum[side][B] * frustum[side][B] +
frustum[side][C] * frustum[side][C] );
// Then we divide the plane's values by it's magnitude.
// This makes it easier to work with.
frustum[side][A] /= magnitude;
frustum[side][B] /= magnitude;
frustum[side][C] /= magnitude;
frustum[side][D] /= magnitude;
}
///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This extracts our frustum from the projection and modelview matrix.
/////
///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CFrustum::CalculateFrustum()
{
float proj[16]; // This will hold our projection matrix
float modl[16]; // This will hold our modelview matrix
float clip[16]; // This will hold the clipping planes
// glGetFloatv() is used to extract information about our OpenGL world.
// Below, we pass in GL_PROJECTION_MATRIX to abstract our projection matrix.
// It then stores the matrix into an array of [16].
glGetFloatv( GL_PROJECTION_MATRIX, proj );
// By passing in GL_MODELVIEW_MATRIX, we can abstract our model view matrix.
// This also stores it in an array of [16].
glGetFloatv( GL_MODELVIEW_MATRIX, modl );
// Now that we have our modelview and projection matrix, if we combine these 2 matrices,
// it will give us our clipping planes. To combine 2 matrices, we multiply them.
clip[ 0] = modl[ 0] * proj[ 0] + modl[ 1] * proj[ 4] + modl[ 2] * proj[ 8] + modl[ 3] * proj[12];
clip[ 1] = modl[ 0] * proj[ 1] + modl[ 1] * proj[ 5] + modl[ 2] * proj[ 9] + modl[ 3] * proj[13];
clip[ 2] = modl[ 0] * proj[ 2] + modl[ 1] * proj[ 6] + modl[ 2] * proj[10] + modl[ 3] * proj[14];
clip[ 3] = modl[ 0] * proj[ 3] + modl[ 1] * proj[ 7] + modl[ 2] * proj[11] + modl[ 3] * proj[15];
clip[ 4] = modl[ 4] * proj[ 0] + modl[ 5] * proj[ 4] + modl[ 6] * proj[ 8] + modl[ 7] * proj[12];
clip[ 5] = modl[ 4] * proj[ 1] + modl[ 5] * proj[ 5] + modl[ 6] * proj[ 9] + modl[ 7] * proj[13];
clip[ 6] = modl[ 4] * proj[ 2] + modl[ 5] * proj[ 6] + modl[ 6] * proj[10] + modl[ 7] * proj[14];
clip[ 7] = modl[ 4] * proj[ 3] + modl[ 5] * proj[ 7] + modl[ 6] * proj[11] + modl[ 7] * proj[15];
clip[ 8] = modl[ 8] * proj[ 0] + modl[ 9] * proj[ 4] + modl[10] * proj[ 8] + modl[11] * proj[12];
clip[ 9] = modl[ 8] * proj[ 1] + modl[ 9] * proj[ 5] + modl[10] * proj[ 9] + modl[11] * proj[13];
clip[10] = modl[ 8] * proj[ 2] + modl[ 9] * proj[ 6] + modl[10] * proj[10] + modl[11] * proj[14];
clip[11] = modl[ 8] * proj[ 3] + modl[ 9] * proj[ 7] + modl[10] * proj[11] + modl[11] * proj[15];
clip[12] = modl[12] * proj[ 0] + modl[13] * proj[ 4] + modl[14] * proj[ 8] + modl[15] * proj[12];
clip[13] = modl[12] * proj[ 1] + modl[13] * proj[ 5] + modl[14] * proj[ 9] + modl[15] * proj[13];
clip[14] = modl[12] * proj[ 2] + modl[13] * proj[ 6] + modl[14] * proj[10] + modl[15] * proj[14];
clip[15] = modl[12] * proj[ 3] + modl[13] * proj[ 7] + modl[14] * proj[11] + modl[15] * proj[15];
// Now we actually want to get the sides of the frustum. To do this we take
// the clipping planes we received above and extract the sides from them.
// This will extract the RIGHT side of the frustum
m_Frustum[RIGHT][A] = clip[ 3] - clip[ 0];
m_Frustum[RIGHT][B] = clip[ 7] - clip[ 4];
m_Frustum[RIGHT][C] = clip[11] - clip[ 8];
m_Frustum[RIGHT][D] = clip[15] - clip[12];
// Now that we have a normal (A,B,C) and a distance (D) to the plane,
// we want to normalize that normal and distance.
// Normalize the RIGHT side
NormalizePlane(m_Frustum, RIGHT);
// This will extract the LEFT side of the frustum
m_Frustum[LEFT][A] = clip[ 3] + clip[ 0];
m_Frustum[LEFT][B] = clip[ 7] + clip[ 4];
m_Frustum[LEFT][C] = clip[11] + clip[ 8];
m_Frustum[LEFT][D] = clip[15] + clip[12];
// Normalize the LEFT side
NormalizePlane(m_Frustum, LEFT);
// This will extract the BOTTOM side of the frustum
m_Frustum[BOTTOM][A] = clip[ 3] + clip[ 1];
m_Frustum[BOTTOM][B] = clip[ 7] + clip[ 5];
m_Frustum[BOTTOM][C] = clip[11] + clip[ 9];
m_Frustum[BOTTOM][D] = clip[15] + clip[13];
// Normalize the BOTTOM side
NormalizePlane(m_Frustum, BOTTOM);
// This will extract the TOP side of the frustum
m_Frustum[TOP][A] = clip[ 3] - clip[ 1];
m_Frustum[TOP][B] = clip[ 7] - clip[ 5];
m_Frustum[TOP][C] = clip[11] - clip[ 9];
m_Frustum[TOP][D] = clip[15] - clip[13];
// Normalize the TOP side
NormalizePlane(m_Frustum, TOP);
// This will extract the BACK side of the frustum
m_Frustum[BACK][A] = clip[ 3] - clip[ 2];
m_Frustum[BACK][B] = clip[ 7] - clip[ 6];
m_Frustum[BACK][C] = clip[11] - clip[10];
m_Frustum[BACK][D] = clip[15] - clip[14];
// Normalize the BACK side
NormalizePlane(m_Frustum, BACK);
// This will extract the FRONT side of the frustum
m_Frustum[FRONT][A] = clip[ 3] + clip[ 2];
m_Frustum[FRONT][B] = clip[ 7] + clip[ 6];
m_Frustum[FRONT][C] = clip[11] + clip[10];
m_Frustum[FRONT][D] = clip[15] + clip[14];
// Normalize the FRONT side
NormalizePlane(m_Frustum, FRONT);
}
// The code below will allow us to make checks within the frustum. For example,
// if we want to see if a point, a sphere, or a cube lies inside of the frustum.
// Because all of our planes point INWARDS (The normals are all pointing inside the frustum)
// we then can assume that if a point is in FRONT of all of the planes, it's inside.
///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a point is inside of the frustum
/////
///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool CFrustum::PointInFrustum( float x, float y, float z )
{
// Go through all the sides of the frustum
for(int i = 0; i < 6; i++ )
{
// Calculate the plane equation and check if the point is behind a side of the frustum
if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= 0)
{
// The point was behind a side, so it ISN'T in the frustum
return false;
}
}
// The point was inside of the frustum (In front of ALL the sides of the frustum)
return true;
}
///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a sphere is inside of our frustum by it's center and radius.
/////
///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool CFrustum::SphereInFrustum( float x, float y, float z, float radius )
{
// Go through all the sides of the frustum
for(int i = 0; i < 6; i++ )
{
// If the center of the sphere is farther away from the plane than the radius
if( m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= -radius )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -