📄 zz_pex.h
字号:
inline ZZ_pEX operator+(long a, const ZZ_pEX& b)
{ ZZ_pEX x; add(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_pEX& a, const ZZ_pEX& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_pEX& a, const ZZ_pE& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_pEX& a, const ZZ_p& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_pEX& a, long b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_pE& a, const ZZ_pEX& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(const ZZ_p& a, const ZZ_pEX& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator-(long a, const ZZ_pEX& b)
{ ZZ_pEX x; sub(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pEX& b)
{ add(x, x, b); return x; }
inline ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_pE& b)
{ add(x, x, b); return x; }
inline ZZ_pEX& operator+=(ZZ_pEX& x, const ZZ_p& b)
{ add(x, x, b); return x; }
inline ZZ_pEX& operator+=(ZZ_pEX& x, long b)
{ add(x, x, b); return x; }
inline ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pEX& b)
{ sub(x, x, b); return x; }
inline ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_pE& b)
{ sub(x, x, b); return x; }
inline ZZ_pEX& operator-=(ZZ_pEX& x, const ZZ_p& b)
{ sub(x, x, b); return x; }
inline ZZ_pEX& operator-=(ZZ_pEX& x, long b)
{ sub(x, x, b); return x; }
inline ZZ_pEX operator-(const ZZ_pEX& a)
{ ZZ_pEX x; negate(x, a); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX& operator++(ZZ_pEX& x) { add(x, x, 1); return x; }
inline void operator++(ZZ_pEX& x, int) { add(x, x, 1); }
inline ZZ_pEX& operator--(ZZ_pEX& x) { sub(x, x, 1); return x; }
inline void operator--(ZZ_pEX& x, int) { sub(x, x, 1); }
/*****************************************************************
Multiplication
******************************************************************/
void mul(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b);
// x = a * b
void sqr(ZZ_pEX& x, const ZZ_pEX& a);
inline ZZ_pEX sqr(const ZZ_pEX& a)
{ ZZ_pEX x; sqr(x, a); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = a^2
void mul(ZZ_pEX & x, const ZZ_pEX& a, long b);
void mul(ZZ_pEX & x, const ZZ_pEX& a, const ZZ_p& b);
void mul(ZZ_pEX & x, const ZZ_pEX& a, const ZZ_pE& b);
inline void mul(ZZ_pEX& x, long a, const ZZ_pEX& b)
{ mul(x, b, a); }
inline void mul(ZZ_pEX& x, const ZZ_p& a, const ZZ_pEX& b)
{ mul(x, b, a); }
inline void mul(ZZ_pEX& x, const ZZ_pE& a, const ZZ_pEX& b)
{ mul(x, b, a); }
void MulTrunc(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, long n);
inline ZZ_pEX MulTrunc(const ZZ_pEX& a, const ZZ_pEX& b, long n)
{ ZZ_pEX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = a * b % X^n
void SqrTrunc(ZZ_pEX& x, const ZZ_pEX& a, long n);
inline ZZ_pEX SqrTrunc(const ZZ_pEX& a, long n)
{ ZZ_pEX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = a*a % X^n
inline ZZ_pEX operator*(const ZZ_pEX& a, const ZZ_pEX& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(const ZZ_pEX& a, const ZZ_pE& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(const ZZ_pEX& a, const ZZ_p& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(const ZZ_pEX& a, long b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(const ZZ_pE& a, const ZZ_pEX& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(const ZZ_p& a, const ZZ_pEX& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator*(long a, const ZZ_pEX& b)
{ ZZ_pEX x; mul(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pEX& b)
{ mul(x, x, b); return x; }
inline ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_pE& b)
{ mul(x, x, b); return x; }
inline ZZ_pEX& operator*=(ZZ_pEX& x, const ZZ_p& b)
{ mul(x, x, b); return x; }
inline ZZ_pEX& operator*=(ZZ_pEX& x, long b)
{ mul(x, x, b); return x; }
void power(ZZ_pEX& x, const ZZ_pEX& a, long e);
inline ZZ_pEX power(const ZZ_pEX& a, long e)
{ ZZ_pEX x; power(x, a, e); NTL_OPT_RETURN(ZZ_pEX, x); }
/*************************************************************
Division
**************************************************************/
void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);
// q = a/b, r = a%b
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pE& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_p& b);
void div(ZZ_pEX& q, const ZZ_pEX& a, long b);
// q = a/b
void rem(ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEX& b);
// r = a%b
long divide(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const ZZ_pEX& a, const ZZ_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
void InvTrunc(ZZ_pEX& x, const ZZ_pEX& a, long m);
inline ZZ_pEX InvTrunc(const ZZ_pEX& a, long m)
{ ZZ_pEX x; InvTrunc(x, a, m); NTL_OPT_RETURN(ZZ_pEX, x); }
// computes x = a^{-1} % X^m
// constant term must be invertible
inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pEX& b)
{ ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_pE& b)
{ ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator/(const ZZ_pEX& a, const ZZ_p& b)
{ ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX operator/(const ZZ_pEX& a, long b)
{ ZZ_pEX x; div(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pEX& b)
{ div(x, x, b); return x; }
inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_pE& b)
{ div(x, x, b); return x; }
inline ZZ_pEX& operator/=(ZZ_pEX& x, const ZZ_p& b)
{ div(x, x, b); return x; }
inline ZZ_pEX& operator/=(ZZ_pEX& x, long b)
{ div(x, x, b); return x; }
inline ZZ_pEX operator%(const ZZ_pEX& a, const ZZ_pEX& b)
{ ZZ_pEX x; rem(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX& operator%=(ZZ_pEX& x, const ZZ_pEX& b)
{ rem(x, x, b); return x; }
/***********************************************************
GCD's
************************************************************/
void GCD(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b);
inline ZZ_pEX GCD(const ZZ_pEX& a, const ZZ_pEX& b)
{ ZZ_pEX x; GCD(x, a, b); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(ZZ_pEX& d, ZZ_pEX& s, ZZ_pEX& t, const ZZ_pEX& a, const ZZ_pEX& b);
// d = gcd(a,b), a s + b t = d
/*************************************************************
Modular Arithmetic without pre-conditioning
**************************************************************/
// arithmetic mod f.
// all inputs and outputs are polynomials of degree less than deg(f).
// ASSUMPTION: f is assumed monic, and deg(f) > 0.
// NOTE: if you want to do many computations with a fixed f,
// use the ZZ_pEXModulus data structure and associated routines below.
void MulMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f);
inline ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b, const ZZ_pEX& f)
{ ZZ_pEX x; MulMod(x, a, b, f); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = (a * b) % f
void SqrMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
inline ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEX& f)
{ ZZ_pEX x; SqrMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = a^2 % f
void MulByXMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
inline ZZ_pEX MulByXMod(const ZZ_pEX& a, const ZZ_pEX& f)
{ ZZ_pEX x; MulByXMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = (a * X) mod f
void InvMod(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
inline ZZ_pEX InvMod(const ZZ_pEX& a, const ZZ_pEX& f)
{ ZZ_pEX x; InvMod(x, a, f); NTL_OPT_RETURN(ZZ_pEX, x); }
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(ZZ_pEX& x, const ZZ_pEX& a, const ZZ_pEX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f
// otherwise, returns 1 and sets x = (a, f)
/******************************************************************
Modular Arithmetic with Pre-conditioning
*******************************************************************/
// If you need to do a lot of arithmetic modulo a fixed f,
// build ZZ_pEXModulus F for f. This pre-computes information about f
// that speeds up the computation a great deal.
class ZZ_pEXModulus {
public:
ZZ_pEXModulus();
~ZZ_pEXModulus();
ZZ_pEXModulus(const ZZ_pEX& ff);
ZZ_pEX f; // the modulus
operator const ZZ_pEX& () const { return f; }
const ZZ_pEX& val() const { return f; }
long n; // deg(f)
long method;
ZZ_pEX h0;
ZZ_pE hlc;
ZZ_pEX f0;
vec_ZZ_pE tracevec; // mutable
};
inline long deg(const ZZ_pEXModulus& F) { return F.n; }
void build(ZZ_pEXModulus& F, const ZZ_pEX& f);
void rem(ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F);
void DivRem(ZZ_pEX& q, ZZ_pEX& r, const ZZ_pEX& a, const ZZ_pEXModulus& F);
void div(ZZ_pEX& q, const ZZ_pEX& a, const ZZ_pEXModulus& F);
void MulMod(ZZ_pEX& c, const ZZ_pEX& a, const ZZ_pEX& b,
const ZZ_pEXModulus& F);
inline ZZ_pEX MulMod(const ZZ_pEX& a, const ZZ_pEX& b,
const ZZ_pEXModulus& F)
{ ZZ_pEX x; MulMod(x, a, b, F); NTL_OPT_RETURN(ZZ_pEX, x); }
void SqrMod(ZZ_pEX& c, const ZZ_pEX& a, const ZZ_pEXModulus& F);
inline ZZ_pEX SqrMod(const ZZ_pEX& a, const ZZ_pEXModulus& F)
{ ZZ_pEX x; SqrMod(x, a, F); NTL_OPT_RETURN(ZZ_pEX, x); }
void PowerMod(ZZ_pEX& h, const ZZ_pEX& g, const ZZ& e, const ZZ_pEXModulus& F);
inline void PowerMod(ZZ_pEX& h, const ZZ_pEX& g, long e,
const ZZ_pEXModulus& F)
{ PowerMod(h, g, ZZ_expo(e), F); }
inline ZZ_pEX PowerMod(const ZZ_pEX& g, const ZZ& e,
const ZZ_pEXModulus& F)
{ ZZ_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }
inline ZZ_pEX PowerMod(const ZZ_pEX& g, long e, const ZZ_pEXModulus& F)
{ ZZ_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(ZZ_pEX, x); }
void PowerXMod(ZZ_pEX& hh, const ZZ& e, const ZZ_pEXModulus& F);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -