📄 hal.h
字号:
The WDT may be used to prevent the unit from being trapped in a system
stalemate, i.e. an endless waiting state. The WDT must be reset before it times
out. If a timeout occurs, the system is reset.
The WDT can also be configured as a normal timer which generates interrupt at
each timeout. This must be configured manually.
******************************************************************************/
// Macro for setting the WDT timeout interval.
#define WDT_SET_TIMEOUT_PERIOD(timeout) \
do { WDCTL &= ~0x03; WDCTL |= timeout; } while (0)
// Where _timeout_ is one of
#define SEC_1 0x00 // after 1 second
#define M_SEC_250 0x01 // after 250 ms
#define M_SEC_15 0x02 // after 15 ms
#define M_SEC_2 0x03 // after 2 ms
// Macro for resetting the WDT. If this is not done before the WDT times out,
// the system is reset.
#define WDT_RESET() do { \
WDCTL = (WDCTL & ~0xF0) | 0xA0; \
WDCTL = (WDCTL & ~0xF0) | 0x50; \
} while (0)
// Macro for turning on the WDT
#define WDT_ENABLE() WDCTL |= 0x08
#define WDT_DISABLE() WDCTL &= ~0x08
/******************************************************************************
******************* ADC macros/functions *******************
*******************************************************************************
These functions/macros simplifies usage of the ADC.
******************************************************************************/
// Macro for setting up a single conversion. If ADCCON1.STSEL = 11, using this
// macro will also start the conversion.
#define ADC_SINGLE_CONVERSION(settings) \
do{ ADCCON3 = settings; }while(0)
// Macro for setting up a single conversion
#define ADC_SEQUENCE_SETUP(settings) \
do{ ADCCON2 = settings; }while(0)
// Where _settings_ are the following:
// Reference voltage:
#define ADC_REF_1_25_V 0x00 // Internal 1.25V reference
#define ADC_REF_P0_7 0x40 // External reference on AIN7 pin
#define ADC_REF_AVDD 0x80 // AVDD_SOC pin
#define ADC_REF_P0_6_P0_7 0xC0 // External reference on AIN6-AIN7 differential input
// Resolution (decimation rate):
#define ADC_8_BIT 0x00 // 64 decimation rate
#define ADC_10_BIT 0x10 // 128 decimation rate
#define ADC_12_BIT 0x20 // 256 decimation rate
#define ADC_14_BIT 0x30 // 512 decimation rate
// Input channel:
#define ADC_AIN0 0x00 // single ended P0_0
#define ADC_AIN1 0x01 // single ended P0_1
#define ADC_AIN2 0x02 // single ended P0_2
#define ADC_AIN3 0x03 // single ended P0_3
#define ADC_AIN4 0x04 // single ended P0_4
#define ADC_AIN5 0x05 // single ended P0_5
#define ADC_AIN6 0x06 // single ended P0_6
#define ADC_AIN7 0x07 // single ended P0_7
#define ADC_GND 0x0C // Ground
#define ADC_TEMP_SENS 0x0E // on-chip temperature sensor
#define ADC_VDD_3 0x0F // (vdd/3)
//-----------------------------------------------------------------------------
// Macro for starting the ADC in continuous conversion mode
#define ADC_SAMPLE_CONTINUOUS() \
do { ADCCON1 &= ~0x30; ADCCON1 |= 0x10; } while (0)
// Macro for stopping the ADC in continuous mode (and setting the ADC to be
// started manually by ADC_SAMPLE_SINGLE() )
#define ADC_STOP() \
do { ADCCON1 |= 0x30; } while (0)
// Macro for initiating a single sample in single-conversion mode (ADCCON1.STSEL = 11).
#define ADC_SAMPLE_SINGLE() \
do { ADC_STOP(); ADCCON1 |= 0x40; } while (0)
// Macro for configuring the ADC to be started from T1 channel 0. (T1 ch 0 must be in compare mode!!)
#define ADC_TRIGGER_FROM_TIMER1() do { ADC_STOP(); ADCCON1 &= ~0x10; } while (0)
// Expression indicating whether a conversion is finished or not.
#define ADC_SAMPLE_READY() (ADCCON1 & 0x80)
// Macro for setting/clearing a channel as input of the ADC
#define ADC_ENABLE_CHANNEL(ch) ADCCFG |= (0x01<<ch)
#define ADC_DISABLE_CHANNEL(ch) ADCCFG &= ~(0x01<<ch)
/******************************************************************************
* @fn halAdcSampleSingle
*
* @brief
* This function makes the adc sample the given channel at the given
* resolution with the given reference.
*
* Parameters:
*
* @param BYTE reference
* The reference to compare the channel to be sampled.
* BYTE resolution
* The resolution to use during the sample (8, 10, 12 or 14 bit)
* BYTE input
* The channel to be sampled.
*
* @return INT16
* The conversion result
*
******************************************************************************/
INT16 halAdcSampleSingle(BYTE reference, BYTE resolution, UINT8 input);
/******************************************************************************
* @fn halGetAdcValue
*
* @brief
* Returns the result of the last ADC conversion.
*
* Parameters:
*
* @param void
*
* @return INT16
* The ADC value
*
******************************************************************************/
INT16 halGetAdcValue(void);
/******************************************************************************
******************* RF communication functions/macros *******************
*******************************************************************************
// The functions in this section are designed to simplify usage of the radio.
// A function for setup, transmitting and receiption are included. In addition,
// macros for writing instructions to the Command Stobe Processor are included.
******************************************************************************/
/******************************************************************************
* @fn halRfSend
*
* @brief
* This function sends the given number of bytes using the radio. The radio
* frequency must be set before sending. Can send a maximum of 125 bytes.
* The function waits until the transfer is complete.
*
* Parameters:
*
* @param BYTE* pData
* Pointer to the start of the data to be transferred.
* @param BYTE length
* The number of bytes to be transferred.
*
* @return BYTE
* Returns the number of transferred bytes.
*
******************************************************************************/
BYTE halRfSendPacket(BYTE* pData, BYTE length);
/******************************************************************************
* @fn halRfReceivePacket
*
* @brief
* This function receives a maximum of 128 bytes sent by another radio
* transmitter. The function will wait for _timeOut_ ms before returning
* without receiving any data.
*
* Parameters:
*
* @param BYTE* pData
* Pointer to the received packet is to be stored.
* @param BYTE pRssi
* Pointer to where to store the received signal strength indicator calculation.
* @param BYTE pLqi
* Pointer to where to store the link quality indicator.
* @param BYTE timeOut
* The number of ms the chip will wait for a packet to be received.
*
* @return BYTE
* Returns the number of received bytes.
*
******************************************************************************/
BYTE halRfReceivePacket(BYTE* pData, BYTE*pRssi, BYTE* pLqi, BYTE timeOut);
/******************************************************************************
* @fn halRfConfig
*
* @brief
* This function configures the radio for simple send and receive operation.
* Advanced IEEE 802.15.4 functionality such as Address Decoding, AutoAck
* etc is not employed. CRC value is automatically calculated to enable
* detection of packet corruption. The desired frequency is set. The
* function returns TRUE if the configuration is successful.
*
* Parameters:
*
* @param UINT32 frequency
* The desired Radio Frequency in kHz.
*
* @return BOOL
* Returns TRUE if the configuration is successful and FALSE otherwise.
*
******************************************************************************/
BOOL halRfConfig(UINT32 frequency);
/******************************************************************************
* @fn halRfSetRadioFrequency
*
* @brief
* This function sets the radio frequency of the radio. The requency must
* be within the range of the radio.
*
* Parameters:
*
* @param WORD frequency
* The desired Radio Frequency in kHz.
*
* @return void
*
******************************************************************************/
void halRfSetRadioFrequency(UINT32 frequency);
#define STOP_RADIO() SIDLE();
// RF interrupt flags
#define IRQ_TIMEOUT 0x20
#define IRQ_DONE 0x10
#define IRQ_CS 0x08
#define IRQ_PQT 0x04
#define IRQ_CCA 0x02
#define IRQ_SFD 0x01
// RF status flags
#define CRC_OK_FLAG 0x80
#define CS_FLAG 0x40
#define PQT_REACHED_FLAG 0x20
#define CCA_FLAG 0x10
#define SFD_FLAG 0x08
// Radio status flags
#define CRC_OK_FLAG 0x80
#define CS_FLAG 0x40
#define PQT_REACHED_FLAG 0x20
#define CCA_FLAG 0x10
#define SFD_FLAG 0x08
// Radio status states
#define CRC_OK (PKTSTATUS & CRC_OK_FLAG)
#define CS (PKTSTATUS & CS_FLAG)
#define PQT_REACHED (PKTSTATUS & PQT_REACHED_FLAG)
#define CCA (PKTSTATUS & CCA_FLAG)
#define SFD (PKTSTATUS & SFD_FLAG)
// Various radio settings
#define APPEND_STATUS 0x04
#define WHITE_DATA 0x40
#define CRC_EN 0x04
#define VARIABLE_PKT_LEN 0x01
#define STAY_INR_RX_AFTER_RX 0x0C
#define RX_AFTER_TX 0x03
#define CALIBRATE_WHEN_COMING_FROM_IDLE 0x10
#define CALIBRATE_EVERY_4TH 0x30
#define PA_POWER_7 0x07
#define PA_POWER_0 0x00
//------------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------------------
// Command Strobes
//------------------------------------------------------------------------------------------------------
#define SFSTXON() do{RFST = 0x00;}while(0)
#define SCAL() do{RFST = 0x01;}while(0)
#define SRX() do{RFST = 0x02;}while(0)
#define STX() do{RFST = 0x03;}while(0)
#define SIDLE() do{RFST = 0x04;}while(0)
#define SAFC() do{RFST = 0x05;}while(0)
#define SNOP() do{RFST = 0xFF;}while(0)
//------------------------------------------------------------------------------------------------------
// Conditions _c_ for the RPT and SKIP instructions of the CSP
#define CCA_TRUE 0x00;
#define RECEIVING 0x01;
#define MCU_BIT_IS_1 0x02;
#define COMMAND_BUF_EMPT 0x03;
#define REGX_IS_0 0x04;
#define REGY_IS_0 0x05;
#define REGZ_IS_0 0x06;
#define NO_OP 0x07;
/******************************************************************************
******************* Memory space mapping macros/functions ********************
*******************************************************************************/
// Macros for enabling or disabling unified code space.
// Unified code space is generally used when executing programs from RAM.
#define ENABLE_UINIFIED_CODE_SPACE() do { MEMCTR |= 0x40; } while (0)
#define DISABLE_UINIFIED_CODE_SPACE() do { MEMCTR &= ~0x40; } while (0)
/******************************************************************************
******************* AES encryption / decryption functions *******************
***********************************************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -