📄 rfc1621.txt
字号:
Network Working Group P. FrancisRequest for Comments: 1621 NTTCategory: Informational May 1994 Pip Near-term ArchitectureStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Preamble During 1992 and 1993, the Pip internet protocol, developed at Belclore, was one of the candidate replacments for IP. In mid 1993, Pip was merged with another candidate, the Simple Internet Protocol (SIP), creating SIPP (SIP Plus). While the major aspects of Pip-- particularly its distinction of identifier from address, and its use of the source route mechanism to achieve rich routing capabilities-- were preserved, many of the ideas in Pip were not. The purpose of this RFC and the companion RFC "Pip Header Processing" are to record the ideas (good and bad) of Pip. This document references a number of Pip draft memos that were in various stages of completion. The basic ideas of those memos are presented in this document, though many details are lost. The very interested reader can obtain those internet drafts by requesting them directly from me at <francis@cactus.ntt.jp>. The remainder of this document is taken verbatim from the Pip draft memo of the same title that existed when the Pip project ended. As such, any text that indicates that Pip is an intended replacement for IP should be ignored.Abstract Pip is an internet protocol intended as the replacement for IP version 4. Pip is a general purpose internet protocol, designed to evolve to all forseeable internet protocol requirements. This specification describes the routing and addressing architecture for near-term Pip deployment. We say near-term only because Pip is designed with evolution in mind, so other architectures are expected in the future. This document, however, makes no reference to such future architectures.Francis [Page 1]RFC 1621 Pip Near-term Architecture May 1994Table of Contents 1. Pip Architecture Overview ................................... 4 1.1 Pip Architecture Characteristics ........................... 4 1.2 Components of the Pip Architecture ......................... 5 2. A Simple Example ............................................ 6 3. Pip Overview ................................................ 7 4. Pip Addressing .............................................. 9 4.1 Hierarchical Pip Addressing ................................ 9 4.1.1 Assignment of (Hierarchical) Pip Addresses ............... 12 4.1.2 Host Addressing .......................................... 14 4.2 CBT Style Multicast Addresses .............................. 15 4.3 Class D Style Multicast Addresses .......................... 16 4.4 Anycast Addressing ......................................... 16 5. Pip IDs ..................................................... 17 6. Use of DNS .................................................. 18 6.1 Information Held by DNS .................................... 19 6.2 Authoritative Queries in DNS ............................... 20 7. Type-of-Service (TOS) (or lack thereof) ..................... 21 8. Routing on (Hierarchical) Pip Addresses ..................... 22 8.1 Exiting a Private Domain ................................... 23 8.2 Intra-domain Networking .................................... 24 9. Pip Header Server ........................................... 25 9.1 Forming Pip Headers ........................................ 25 9.2 Pip Header Protocol (PHP) .................................. 27 9.3 Application Interface ...................................... 27 10. Routing Algorithms in Pip .................................. 28 10.1 Routing Information Filtering ............................. 29 11. Transition ................................................. 30 11.1 Justification for Pip Transition Scheme ................... 31 11.2 Architecture for Pip Transition Scheme .................... 31 11.3 Translation between Pip and IP packets .................... 33 11.4 Translating between PCMP and ICMP ......................... 34 11.5 Translating between IP and Pip Routing Information ........ 34 11.6 Old TCP and Application Binaries in Pip Hosts ............. 34 11.7 Translating between Pip Capable and non-Pip Capable DNS Servers ................................................... 35Francis [Page 2]RFC 1621 Pip Near-term Architecture May 1994 12. Pip Address and ID Auto-configuration ...................... 37 12.1 Pip Address Prefix Administration ......................... 37 12.2 Host Autoconfiguration .................................... 38 12.2.1 Host Initial Pip ID Creation ............................ 38 12.2.2 Host Pip Address Assignment ............................. 39 12.2.3 Pip ID and Domain Name Assignment ....................... 39 13. Pip Control Message Protocol (PCMP) ........................ 40 14. Host Mobility .............................................. 42 14.1 PCMP Mobile Host message .................................. 43 14.2 Spoofing Pip IDs .......................................... 44 15. Public Data Network (PDN) Address Discovery ................ 44 15.1 Notes on Carrying PDN Addresses in NSAPs .................. 46 16. Evolution with Pip ......................................... 46 16.1 Handling Directive (HD) and Routing Context (RC) Evolution. 49 16.1.1 Options Evolution ....................................... 50 References ..................................................... 51 Security Considerations ........................................ 51 Author's Address ............................................... 51Francis [Page 3]RFC 1621 Pip Near-term Architecture May 1994Introduction Pip is an internet protocol intended as the replacement for IP version 4. Pip is a general purpose internet protocol, designed to handle all forseeable internet protocol requirements. This specification describes the routing and addressing architecture for near-term Pip deployment. We say near-term only because Pip is designed with evolution in mind, so other architectures are expected in the future. This document, however, makes no reference to such future architectures (except in that it discusses Pip evolution in general). This document gives an overall picture of how Pip operates. It is provided primarily as a framework within which to understand the total set of documents that comprise Pip.1. Pip Architecture Overview The Pip near-term architecture is an incremental step from IP. Like IP, near-term Pip is datagram. Pip runs under TCP and UDP. DNS is used in the same fashion it is now used to distribute name to Pip Address (and ID) mappings. Routing in the near-term Pip architecture is hop-by-hop, though it is possible for a host to create a domain- level source route (for policy reasons). Pip Addresses have more hierarchy than IP, thus improving scaling on one hand, but introducing additional addressing complexities, such as multiple addresses, on the other. Pip, however, uses hierarchical addresses to advantage by making them provider-based, and using them to make policy routing (in this case, provider selection) choices. Pip also provides mechanisms for automatically assigning provider prefixes to hosts and routers in domains. This is the main difference between the Pip near-term architecture and the IP architecture. (Note that in the remainder of this paper, unless otherwise stated, the phrase "Pip architecture" refers to the near- term Pip architecture described herein.)2. Pip Architecture Characteristics The proposed architecture for near-term Pip has the following characteristics: 1. Provider-rooted hierarchical addresses. 2. Automatic domain-wide address prefix assignment. 3. Automatic host address and ID assignment.Francis [Page 4]RFC 1621 Pip Near-term Architecture May 1994 4. Exit provider selection. 5. Multiple defaults routing (default routing, but to multiple exit points). 6. Equivalent of IP Class D style addressing for multicast. 7. CBT style multicast. 8. "Anycast" addressing (route to one of a group, usually the nearest). 9. Providers support forwarding on policy routes (but initially will not provide the support for sources to calculate policy routes). 10. Mobile hosts. 11. Support for routing across large Public Data Networks (PDN). 12. Inter-operation with IP hosts (but, only within an IP-address domain where IP addresses are unique). In particular, an IP address can be explicitly carried in a Pip header. 13. Operation with existing transport and application binaries (though if the application contains IP context, like FTP, it may only work within a domain where IP addresses are unique). 14. Mechanisms for evolving Pip beyond the near-term architecture.1.2 Components of the Pip Architecture The Pip Architecture consists of the following five systems: 1. Host (source and sink of Pip packets) 2. Router (forwards Pip packets) 3. DNS 4. Pip/IP Translator 5. Pip Header Server (formats Pip headers) The first three systems exist in the IP architecture, and require no explanation here. The fourth system, the Pip/IP Translator, is required solely for the purpose of inter-operating with current IP systems. All Pip routers are also Pip/IP translators.Francis [Page 5]RFC 1621 Pip Near-term Architecture May 1994 The fifth system, the Pip Header Server, is new. Its function is to format Pip headers on behalf of the source host (though initially hosts will be able to do this themselves). This use of the Pip Header Server will increase as policy routing becomes more sophisticated (moves beyond near-term Pip Architecture capabilities). To handle future evolution, a Pip Header Server can be used to "spoon-feed" Pip headers to old hosts that have not been updated to understand new uses of Pip. This way, the probability that the internet can evolve without changing all hosts is increased.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -