📄 rfc1553.txt
字号:
Network Working Group S. MathurRequest for Comments: 1553 M. LewisCategory: Standards Track Telebit Corporation December 1993 Compressing IPX Headers Over WAN Media (CIPX)Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This document describes a method for compressing the headers of IPX datagrams (CIPX). With this method, it is possible to significantly improve performance over lower speed wide area network (WAN) media. For normal IPX packet traffic, CIPX can provide a compression ratio of approximately 2:1 including both IPX header and data. This method can be used on various type of WAN media, including those supporting PPP and X.25. This memo ia a product of the Point-to-Point Protocol Extensions (PPPEXT) Working Group of the IETF. Comments should be sent to the authors and the ietf-ppp@ucdavis.edu mailing list.Specification of Requirements In this document, several words are used to signify the requirements of the specification. These words are often capitalized. MUST This word, or the adjective "required", means that the definition is an absolute requirement of the specification. MUST NOT This phrase means that the definition is an absolute prohibition of the specification.Mathur & Lewis [Page 1]RFC 1553 CIPX December 1993 SHOULD This word, or the adjective "recommended", means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and carefully weighed before choosing a different course. MAY This word, or the adjective "optional", means that this item is one of an allowed set of alternatives. An implementation which does not include this option MUST be prepared to interoperate with another implementation which does include the option.Introduction Internetwork Packet Exchange (IPX) is a protocol defined by the Novell Corporation [1]. It is derived from the Internet Datagram Protocol (IDP) protocol of the Xerox Network Systems (XNS) family of protocols. IPX is a datagram, connectionless protocol that does not require an acknowledgment for each packet sent. The IPX protocol corresponds to the network layer of the ISO model. Usually, there is a transport layer protocol above IPX. The most common transport protocol is the Netware Core Protocol (NCP), which is used for file server access. The Sequenced Packet Exchange (SPX) is the reliable connection-based transport protocol commonly used by applications. The IPX packet consists of a 30 octet IPX header, usually followed by the transport layer protocol header. The NCP header is 6 octets in length. The SPX header is 12 octets in length. Two strategies are described below for compressing IPX headers. This specification requires that implementations of CIPX support both IPX header compression strategies. These header compression algorithms are based on those Van Jacobson described [2] for TCP/IP packets. The first strategy is to compress only the IPX header. This compression algorithm can be used to compress any IPX packet, without affecting the transport protocol. This algorithm compresses a 30 octet IPX header into a one to seven octet header. The second strategy is to compress the combined IPX and NCP headers. This algorithm compresses only NCP packets with NCP type of 0x2222 and 0x3333. This algorithm compresses a 36 octet NCP/IPXMathur & Lewis [Page 2]RFC 1553 CIPX December 1993 header into a one to eight octet header. Lastly, it is possible and many times desirable, to use this type of header compression in conjunction with some type of data compression. Data compression technology takes many forms. Link bit stream compression is a common approach over very low speed asynchronous links, normally performed by modems transparently. Transparent bit stream compression is also offered in some DSUs, routers and bridges. Data compression can be provided using protocols such as CCITT V.42bis[3], MNP 5, Lempel-Ziv, or LAPB[4]. When using both header and data compression, the sequence of compression is important. When sending packets, data compression MUST be done after header compression. Conversely when receiving packets, data decompression MUST be done before header decompression.IPX Compression Algorithm The normal IPX header consists of the following fields: checksum, packet length, transport control (hop count), packet type, destination and source address fields. +-----------------------+ | Checksum | +-----------------------+ | Packet Length | +-----------+-----------+ | Hops |Packet Type| +-----------+-----------+ | Destination | | Address | | (12 Octets) | +-----------------------+ | Source | | Address | | (12 Octets) | +-----------------------+ IPX PACKET HEADER The IPX header diagram above is shown without the field alignment details. Consider each field of the IPX header separately, and how it typically changes. Historically, Novell has not used the Checksum field in the IPXMathur & Lewis [Page 3]RFC 1553 CIPX December 1993 header, and has required that this field be set to 0xFFFF. Since the Checksum field remains constant, it is clear that the value can be compressed. Where Checksums are implemented (not 0xFFFF), the Checksum MUST be included in the compressed packet. Recalculating the checksum would destroy the end-to-end reliability of the connection. Note that Checksums are now implemented in the Fault Tolerant Servers. For most links, the Packet Length can be determined from the MAC layer. There are cases in which the length cannot be determined from the MAC layer. For example, some hardware devices pad packets to a required minimum length. For links where it is not possible to determine the IPX packet length from the MAC layer, packet length needs to be included in the compressed packet. The Transport Control (Hops) field usually does not change between two end-points. For the purposes of compression, we will assume that it never changes, and will not examine this field when determining a connection. The Packet Type field is constant for any connection. The Destination and Source Address fields are each made up of 12 octets: Network (4 octets), Node (6 octets), and Socket (2 octets) fields. An IPX connection is the logical association between two endpoints known by a given source and destination address pair. For any specific IPX connection, the Destination and Source Address fields are constant. Hence, the fields that may need to be included in the compressed IPX header are the Checksum and the Packet Length. While using this IPX header compression algorithm, packets can be lost. The loss of an Initial packet presents a problem. In this case, if the sender later tries to send a compressed packet, the receiving end cannot decompress the packet correctly. Sufficient information is not available in the IPX header to determine when a re-transmission has occured. For this reason, it is necessary that the sender of an Initial packet be guaranteed that the packet has been received. Therefore, we provide a mechanism for Confirmation of an Initial packet.NCP/IPX Header Compression Since most IPX packets are Netware Core Protocol packets (packet type 17), compressing the NCP header will give us added performance. AMathur & Lewis [Page 4]RFC 1553 CIPX December 1993 minimal CIPX implementation MUST also implement NCP/IPX compression. +------------+ | NCP | | Type | +------------+ | Sequence | | Number | +------------+ | Connection | |(low octet) | +------------+ | Task | | Number | +------------+ | Connection | |(high octet)| +------------+ NCP HEADER The NCP header is 6 octets in length consisting of the following fields: NCP type, sequence number, connection number and task number. The NCP type field values that are currently defined are: 1111 Create Connection 2222 NCP request from workstation 3333 NCP reply from file server 5555 Destroy Connection 7777 Burst Mode Packet 9999 Server Busy Packet This NCP header compression algorithm only compresses packets that have a type field value of 0x2222 or 0x3333. If the NCP type is 0x2222, this packet is a request from the client to the server. Conversely if the NCP type is 0x3333, this is a response from the server to the client. All other types of NCP packets are not compressed at the NCP level, but are compressed at the IPX level. The Create Connection (0x111), Destroy Connection (0x5555) and Server Busy (0x9999) packets are not exchanged frequently enough to justify special NCP compression. The Burst Mode (0x7777) packet is discussed below. The connection number is a constant for a given connection. The sequence number is increased by one for each new request. Hence the sequence number can be determined implicitly. The decompressorMathur & Lewis [Page 5]RFC 1553 CIPX December 1993 increments the sequence number for each compressed packet it receives for a connection. The task number can change unpredictably, although it might remain constant for several packets. If the NCP task number is different from the last one for this connection, the NCP task number must be included. If the NCP packet is lost, it will be retransmitted through the normal transport layer mechanisms. The Initial NCP packet does not require confirmation, as a re-transmitted packet can be easily identified. This is accomplished by comparing the sequence number of the packet to the sequence number of the previous packet. If the sequence number is not exactly one greater than the previous packet, a new Initial packet must be sent, although the same connection slot may be used. In the event of compressed packet loss, the sequence number will be too small. When the IPX Checksum is present, the loss can be determined at the destination system by an incorrect checksum. When there is no checksum present, the loss is more likely to be detected upon receiving a later retransmission.NCP Burst Mode Packets The burst mode protocol uses the NCP type value of 0x7777. This type of packet does not have the normal NCP header described above. Instead, it has a 36 octet burst header. The above NCP header compression algorithm should not be used to compress this packet. The IPX header in this packet is still compressible with the IPX header compression algorithm described.SPX Packets SPX packets are typically used by applications which require reliable service such as print servers. It is possible to apply a similar NCP/IPX technique to SPX/IPX packets. At this time, we
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -