📄 rfc2640.txt
字号:
Network Working Group B. CurtinRequest for Comments: 2640 Defense Information Systems AgencyUpdates: 959 July 1999Category: Proposed Standard Internationalization of the File Transfer ProtocolStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract The File Transfer Protocol, as defined in RFC 959 [RFC959] and RFC 1123 Section 4 [RFC1123], is one of the oldest and widely used protocols on the Internet. The protocol's primary character set, 7 bit ASCII, has served the protocol well through the early growth years of the Internet. However, as the Internet becomes more global, there is a need to support character sets beyond 7 bit ASCII. This document addresses the internationalization (I18n) of FTP, which includes supporting the multiple character sets and languages found throughout the Internet community. This is achieved by extending the FTP specification and giving recommendations for proper internationalization support.Table of Contents ABSTRACT.......................................................1 1 INTRODUCTION.................................................2 1.1 Requirements Terminology..................................2 2 INTERNATIONALIZATION.........................................3 2.1 International Character Set...............................3 2.2 Transfer Encoding Set.....................................4 3 PATHNAMES....................................................5 3.1 General compliance........................................5 3.2 Servers compliance........................................6 3.3 Clients compliance........................................7 4 LANGUAGE SUPPORT.............................................7Curtin Proposed Standard [Page 1]RFC 2640 FTP Internalization July 1999 4.1 The LANG command..........................................8 4.2 Syntax of the LANG command................................9 4.3 Feat response for LANG command...........................11 4.3.1 Feat examples.........................................11 5 SECURITY CONSIDERATIONS.....................................12 6 ACKNOWLEDGMENTS.............................................12 7 GLOSSARY....................................................13 8 BIBLIOGRAPHY................................................13 9 AUTHOR'S ADDRESS............................................15 ANNEX A - IMPLEMENTATION CONSIDERATIONS.......................16 A.1 General Considerations...................................16 A.2 Transition Considerations................................18 ANNEX B - SAMPLE CODE AND EXAMPLES............................19 B.1 Valid UTF-8 check........................................19 B.2 Conversions..............................................20 B.2.1 Conversion from Local Character Set to UTF-8..........20 B.2.2 Conversion from UTF-8 to Local Character Set..........23 B.2.3 ISO/IEC 8859-8 Example................................25 B.2.4 Vendor Codepage Example...............................25 B.3 Pseudo Code for Translating Servers......................26 Full Copyright Statement......................................271 Introduction As the Internet grows throughout the world the requirement to support character sets outside of the ASCII [ASCII] / Latin-1 [ISO-8859] character set becomes ever more urgent. For FTP, because of the large installed base, it is paramount that this is done without breaking existing clients and servers. This document addresses this need. In doing so it defines a solution which will still allow the installed base to interoperate with new clients and servers. This document enhances the capabilities of the File Transfer Protocol by removing the 7-bit restrictions on pathnames used in client commands and server responses, RECOMMENDs the use of a Universal Character Set (UCS) ISO/IEC 10646 [ISO-10646], RECOMMENDs a UCS transformation format (UTF) UTF-8 [UTF-8], and defines a new command for language negotiation. The recommendations made in this document are consistent with the recommendations expressed by the IETF policy related to character sets and languages as defined in RFC 2277 [RFC2277].1.1. Requirements Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [BCP14].Curtin Proposed Standard [Page 2]RFC 2640 FTP Internalization July 19992 Internationalization The File Transfer Protocol was developed when the predominate character sets were 7 bit ASCII and 8 bit EBCDIC. Today these character sets cannot support the wide range of characters needed by multinational systems. Given that there are a number of character sets in current use that provide more characters than 7-bit ASCII, it makes sense to decide on a convenient way to represent the union of those possibilities. To work globally either requires support of a number of character sets and to be able to convert between them, or the use of a single preferred character set. To assure global interoperability this document RECOMMENDS the latter approach and defines a single character set, in addition to NVT ASCII and EBCDIC, which is understandable by all systems. For FTP this character set SHALL be ISO/IEC 10646:1993. For support of global compatibility it is STRONGLY RECOMMENDED that clients and servers use UTF-8 encoding when exchanging pathnames. Clients and servers are, however, under no obligation to perform any conversion on the contents of a file for operations such as STOR or RETR. The character set used to store files SHALL remain a local decision and MAY depend on the capability of local operating systems. Prior to the exchange of pathnames they SHOULD be converted into a ISO/IEC 10646 format and UTF-8 encoded. This approach, while allowing international exchange of pathnames, will still allow backward compatibility with older systems because the code set positions for ASCII characters are identical to the one byte sequence in UTF-8. Sections 2.1 and 2.2 give a brief description of the international character set and transfer encoding RECOMMENDED by this document. A more thorough description of UTF-8, ISO/IEC 10646, and UNICODE [UNICODE], beyond that given in this document, can be found in RFC 2279 [RFC2279].2.1 International Character Set The character set defined for international support of FTP SHALL be the Universal Character Set as defined in ISO 10646:1993 as amended. This standard incorporates the character sets of many existing international, national, and corporate standards. ISO/IEC 10646 defines two alternate forms of encoding, UCS-4 and UCS-2. UCS-4 is a four byte (31 bit) encoding containing 2**31 code positions divided into 128 groups of 256 planes. Each plane consists of 256 rows of 256 cells. UCS-2 is a 2 byte (16 bit) character set consisting of plane zero or the Basic Multilingual Plane (BMP). Currently, no codesets have been defined outside of the 2 byte BMP.Curtin Proposed Standard [Page 3]RFC 2640 FTP Internalization July 1999 The Unicode standard version 2.0 [UNICODE] is consistent with the UCS-2 subset of ISO/IEC 10646. The Unicode standard version 2.0 includes the repertoire of IS 10646 characters, amendments 1-7 of IS 10646, and editorial and technical corrigenda.2.2 Transfer Encoding UCS Transformation Format 8 (UTF-8), in the past referred to as UTF-2 or UTF-FSS, SHALL be used as a transfer encoding to transmit the international character set. UTF-8 is a file safe encoding which avoids the use of byte values that have special significance during the parsing of pathname character strings. UTF-8 is an 8 bit encoding of the characters in the UCS. Some of UTF-8's benefits are that it is compatible with 7 bit ASCII, so it doesn't affect programs that give special meanings to various ASCII characters; it is immune to synchronization errors; its encoding rules allow for easy identification; and it has enough space to support a large number of character sets. UTF-8 encoding represents each UCS character as a sequence of 1 to 6 bytes in length. For all sequences of one byte the most significant bit is ZERO. For all sequences of more than one byte the number of ONE bits in the first byte, starting from the most significant bit position, indicates the number of bytes in the UTF-8 sequence followed by a ZERO bit. For example, the first byte of a 3 byte UTF-8 sequence would have 1110 as its most significant bits. Each additional bytes (continuing bytes) in the UTF-8 sequence, contain a ONE bit followed by a ZERO bit as their most significant bits. The remaining free bit positions in the continuing bytes are used to identify characters in the UCS. The relationship between UCS and UTF-8 is demonstrated in the following table: UCS-4 range(hex) UTF-8 byte sequence(binary) 00000000 - 0000007F 0xxxxxxx 00000080 - 000007FF 110xxxxx 10xxxxxx 00000800 - 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx 00010000 - 001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 00200000 - 03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 04000000 - 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx A beneficial property of UTF-8 is that its single byte sequence is consistent with the ASCII character set. This feature will allow a transition where old ASCII-only clients can still interoperate with new servers that support the UTF-8 encoding.Curtin Proposed Standard [Page 4]RFC 2640 FTP Internalization July 1999 Another feature is that the encoding rules make it very unlikely that a character sequence from a different character set will be mistaken for a UTF-8 encoded character sequence. Clients and servers can use a simple routine to determine if the character set being exchanged is valid UTF-8. Section B.1 shows a code example of this check.3 Pathnames3.1 General compliance - The 7-bit restriction for pathnames exchanged is dropped. - Many operating system allow the use of spaces <SP>, carriage return <CR>, and line feed <LF> characters as part of the pathname. The exchange of pathnames with these special command characters will cause the pathnames to be parsed improperly. This is because ftp commands associated with pathnames have the form: COMMAND <SP> <pathname> <CRLF>. To allow the exchange of pathnames containing these characters, the definition of pathname is changed from <pathname> ::= <string> ; in BNF format to pathname = 1*(%x01..%xFF) ; in ABNF format [ABNF]. To avoid mistaking these characters within pathnames as special command characters the following rules will apply: There MUST be only one <SP> between a ftp command and the pathname. Implementations MUST assume <SP> characters following the initial <SP> as part of the pathname. For example the pathname in STOR <SP><SP><SP>foo.bar<CRLF> is <SP><SP>foo.bar. Current implementations, which may allow multiple <SP> characters as separators between the command and pathname, MUST assure that they comply with this single <SP> convention. Note: Implementations which treat 3 character commands (e.g. CWD, MKD, etc.) as a fixed 4 character command by padding the command with a trailing <SP> are in non-compliance to this specification. When a <CR> character is encountered as part of a pathname it MUST be padded with a <NUL> character prior to sending the command. On receipt of a pathname containing a <CR><NUL> sequence the <NUL> character MUST be stripped away. This approach is described in the Telnet protocol [RFC854] on pages 11 and 12. For example, to store a pathname foo<CR><LF>boo.bar the pathname would becomeCurtin Proposed Standard [Page 5]RFC 2640 FTP Internalization July 1999 foo<CR><NUL><LF>boo.bar prior to sending the command STOR <SP>foo<CR><NUL><LF>boo.bar<CRLF>. Upon receipt of the altered pathname the <NUL> character following the <CR> would be stripped away to form the original pathname. - Conforming clients and servers MUST support UTF-8 for the transfer and receipt of pathnames. Clients and servers MAY in addition give users a choice of specifying interpretation of pathnames in another encoding. Note that configuring clients and servers to use character sets / encoding other than UTF-8 is outside of the scope of this document. While it is recognized that in certain operational scenarios this may be desirable, this is left as a quality of implementation and operational issue. - Pathnames are sequences of bytes. The encoding of names that are valid UTF-8 sequences is assumed to be UTF-8. The character set of other names is undefined. Clients and servers, unless otherwise configured to support a specific native character set, MUST check for a valid UTF-8 byte sequence to determine if the pathname being presented is UTF-8. - To avoid data loss, clients and servers SHOULD use the UTF-8 encoded pathnames when unable to convert them to a usable code set. - There may be cases when the code set / encoding presented to the server or client cannot be determined. In such cases the raw bytes SHOULD be used.3.2 Servers compliance - Servers MUST support the UTF-8 feature in response to the FEAT command [RFC2389]. The UTF-8 feature is a line containing the exact string "UTF8". This string is not case sensitive, but SHOULD be transmitted in upper case. The response to a FEAT command SHOULD be: C> feat S> 211- <any descriptive text> S> ... S> UTF8 S> ... S> 211 end The ellipses indicate placeholders where other features may be included, but are NOT REQUIRED. The one space indentation of the feature lines is mandatory [RFC2389].Curtin Proposed Standard [Page 6]RFC 2640 FTP Internalization July 1999 - Mirror servers may want to exactly reflect the site that they are mirroring. In such cases servers MAY store and present the exact pathname bytes that it received from the main server.3.3 Clients compliance - Clients which do not require display of pathnames are under no obligation to do so. Non-display clients do not need to conform to requirements associated with display. - Clients, which are presented UTF-8 pathnames by the server, SHOULD parse UTF-8 correctly and attempt to display the pathname within the limitation of the resources available. - Clients MUST support the FEAT command and recognize the "UTF8" feature (defined in 3.2 above) to determine if a server supports UTF-8 encoding. - Character semantics of other names shall remain undefined. If a client detects that a server is non UTF-8, it SHOULD change its display appropriately. How a client implementation handles non UTF-8 is a quality of implementation issue. It MAY try to assume some other encoding, give the user a chance to try to assume something, or save encoding assumptions for a server from one FTP session to another. - Glyph rendering is outside the scope of this document. How a client presents characters it cannot display is a quality of implementation issue. This document RECOMMENDS that octets corresponding to non-displayable characters SHOULD be presented in URL %HH format defined in RFC 1738 [RFC1738]. They MAY, however, display them as question marks, with their UCS hexadecimal value, or in any other suitable fashion. - Many existing clients interpret 8-bit pathnames as being in the local character set. They MAY continue to do so for pathnames that are not valid UTF-8.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -