📄 rfc2518.txt
字号:
Goland, et al. Standards Track [Page 10]RFC 2518 WEBDAV February 19995 Collections of Web Resources This section provides a description of a new type of Web resource, the collection, and discusses its interactions with the HTTP URL namespace. The purpose of a collection resource is to model collection-like objects (e.g., file system directories) within a server's namespace. All DAV compliant resources MUST support the HTTP URL namespace model specified herein.5.1 HTTP URL Namespace Model The HTTP URL namespace is a hierarchical namespace where the hierarchy is delimited with the "/" character. An HTTP URL namespace is said to be consistent if it meets the following conditions: for every URL in the HTTP hierarchy there exists a collection that contains that URL as an internal member. The root, or top-level collection of the namespace under consideration is exempt from the previous rule. Neither HTTP/1.1 nor WebDAV require that the entire HTTP URL namespace be consistent. However, certain WebDAV methods are prohibited from producing results that cause namespace inconsistencies. Although implicit in [RFC2068] and [RFC2396], any resource, including collection resources, MAY be identified by more than one URI. For example, a resource could be identified by multiple HTTP URLs.5.2 Collection Resources A collection is a resource whose state consists of at least a list of internal member URIs and a set of properties, but which may have additional state such as entity bodies returned by GET. An internal member URI MUST be immediately relative to a base URI of the collection. That is, the internal member URI is equal to a containing collection's URI plus an additional segment for non- collection resources, or additional segment plus trailing slash "/" for collection resources, where segment is defined in section 3.3 of [RFC2396]. Any given internal member URI MUST only belong to the collection once, i.e., it is illegal to have multiple instances of the same URI in a collection. Properties defined on collections behave exactly as do properties on non-collection resources.Goland, et al. Standards Track [Page 11]RFC 2518 WEBDAV February 1999 For all WebDAV compliant resources A and B, identified by URIs U and V, for which U is immediately relative to V, B MUST be a collection that has U as an internal member URI. So, if the resource with URL http://foo.com/bar/blah is WebDAV compliant and if the resource with URL http://foo.com/bar/ is WebDAV compliant then the resource with URL http://foo.com/bar/ must be a collection and must contain URL http://foo.com/bar/blah as an internal member. Collection resources MAY list the URLs of non-WebDAV compliant children in the HTTP URL namespace hierarchy as internal members but are not required to do so. For example, if the resource with URL http://foo.com/bar/blah is not WebDAV compliant and the URL http://foo.com/bar/ identifies a collection then URL http://foo.com/bar/blah may or may not be an internal member of the collection with URL http://foo.com/bar/. If a WebDAV compliant resource has no WebDAV compliant children in the HTTP URL namespace hierarchy then the WebDAV compliant resource is not required to be a collection. There is a standing convention that when a collection is referred to by its name without a trailing slash, the trailing slash is automatically appended. Due to this, a resource may accept a URI without a trailing "/" to point to a collection. In this case it SHOULD return a content-location header in the response pointing to the URI ending with the "/". For example, if a client invokes a method on http://foo.bar/blah (no trailing slash), the resource http://foo.bar/blah/ (trailing slash) may respond as if the operation were invoked on it, and should return a content-location header with http://foo.bar/blah/ in it. In general clients SHOULD use the "/" form of collection names. A resource MAY be a collection but not be WebDAV compliant. That is, the resource may comply with all the rules set out in this specification regarding how a collection is to behave without necessarily supporting all methods that a WebDAV compliant resource is required to support. In such a case the resource may return the DAV:resourcetype property with the value DAV:collection but MUST NOT return a DAV header containing the value "1" on an OPTIONS response.5.3 Creation and Retrieval of Collection Resources This document specifies the MKCOL method to create new collection resources, rather than using the existing HTTP/1.1 PUT or POST method, for the following reasons:Goland, et al. Standards Track [Page 12]RFC 2518 WEBDAV February 1999 In HTTP/1.1, the PUT method is defined to store the request body at the location specified by the Request-URI. While a description format for a collection can readily be constructed for use with PUT, the implications of sending such a description to the server are undesirable. For example, if a description of a collection that omitted some existing resources were PUT to a server, this might be interpreted as a command to remove those members. This would extend PUT to perform DELETE functionality, which is undesirable since it changes the semantics of PUT, and makes it difficult to control DELETE functionality with an access control scheme based on methods. While the POST method is sufficiently open-ended that a "create a collection" POST command could be constructed, this is undesirable because it would be difficult to separate access control for collection creation from other uses of POST. The exact definition of the behavior of GET and PUT on collections is defined later in this document.5.4 Source Resources and Output Resources For many resources, the entity returned by a GET method exactly matches the persistent state of the resource, for example, a GIF file stored on a disk. For this simple case, the URI at which a resource is accessed is identical to the URI at which the source (the persistent state) of the resource is accessed. This is also the case for HTML source files that are not processed by the server prior to transmission. However, the server can sometimes process HTML resources before they are transmitted as a return entity body. For example, a server- side-include directive within an HTML file might instruct a server to replace the directive with another value, such as the current date. In this case, what is returned by GET (HTML plus date) differs from the persistent state of the resource (HTML plus directive). Typically there is no way to access the HTML resource containing the unprocessed directive. Sometimes the entity returned by GET is the output of a data- producing process that is described by one or more source resources (that may not even have a location in the URI namespace). A single data-producing process may dynamically generate the state of a potentially large number of output resources. An example of this is a CGI script that describes a "finger" gateway process that maps part of the namespace of a server into finger requests, such as http://www.foo.bar.org/finger_gateway/user@host.Goland, et al. Standards Track [Page 13]RFC 2518 WEBDAV February 1999 In the absence of distributed authoring capabilities, it is acceptable to have no mapping of source resource(s) to the URI namespace. In fact, preventing access to the source resource(s) has desirable security benefits. However, if remote editing of the source resource(s) is desired, the source resource(s) should be given a location in the URI namespace. This source location should not be one of the locations at which the generated output is retrievable, since in general it is impossible for the server to differentiate requests for source resources from requests for process output resources. There is often a many-to-many relationship between source resources and output resources. On WebDAV compliant servers the URI of the source resource(s) may be stored in a link on the output resource with type DAV:source (see section 13.10 for a description of the source link property). Storing the source URIs in links on the output resources places the burden of discovering the source on the authoring client. Note that the value of a source link is not guaranteed to point to the correct source. Source links may break or incorrect values may be entered. Also note that not all servers will allow the client to set the source link value. For example a server which generates source links on the fly for its CGI files will most likely not allow a client to set the source link value.6 Locking The ability to lock a resource provides a mechanism for serializing access to that resource. Using a lock, an authoring client can provide a reasonable guarantee that another principal will not modify a resource while it is being edited. In this way, a client can prevent the "lost update" problem. This specification allows locks to vary over two client-specified parameters, the number of principals involved (exclusive vs. shared) and the type of access to be granted. This document defines locking for only one access type, write. However, the syntax is extensible, and permits the eventual specification of locking for other access types.6.1 Exclusive Vs. Shared Locks The most basic form of lock is an exclusive lock. This is a lock where the access right in question is only granted to a single principal. The need for this arbitration results from a desire to avoid having to merge results.Goland, et al. Standards Track [Page 14]RFC 2518 WEBDAV February 1999 However, there are times when the goal of a lock is not to exclude others from exercising an access right but rather to provide a mechanism for principals to indicate that they intend to exercise their access rights. Shared locks are provided for this case. A shared lock allows multiple principals to receive a lock. Hence any principal with appropriate access can get the lock. With shared locks there are two trust sets that affect a resource. The first trust set is created by access permissions. Principals who are trusted, for example, may have permission to write to the resource. Among those who have access permission to write to the resource, the set of principals who have taken out a shared lock also must trust each other, creating a (typically) smaller trust set within the access permission write set. Starting with every possible principal on the Internet, in most situations the vast majority of these principals will not have write access to a given resource. Of the small number who do have write access, some principals may decide to guarantee their edits are free from overwrite conflicts by using exclusive write locks. Others may decide they trust their collaborators will not overwrite their work (the potential set of collaborators being the set of principals who have write permission) and use a shared lock, which informs their collaborators that a principal may be working on the resource. The WebDAV extensions to HTTP do not need to provide all of the communications paths necessary for principals to coordinate their activities. When using shared locks, principals may use any out of band communication channel to coordinate their work (e.g., face-to- face interaction, written notes, post-it notes on the screen, telephone conversation, Email, etc.) The intent of a shared lock is to let collaborators know who else may be working on a resource. Shared locks are included because experience from web distributed authoring systems has indicated that exclusive locks are often too rigid. An exclusive lock is used to enforce a particular editing process: take out an exclusive lock, read the resource, perform edits, write the resource, release the lock. This editing process
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -