📄 rfc492.txt
字号:
Network Working Group E. MeyerRequest for Comments: 492 MIT-MulticsNIC: 15357 18 April 1973 RESPONSE TO RFC 467 Jerry Burchfiel and Ray Tomlinson of Bolt, Beranek, and Newman, Inc, have issued a Network Request for Comments (#467) which proposes a solution to two problems which have been annoying to Network users. This document will briefly describe the problems and proposed solutions, and offer comments and alternative suggestions.BACKGROUND To establish a data connection between two hosts through the network, the Host-Host protocol requires that one host send a Request for Connection and that the second Host reply affirmatively. If the desired socket("port") at the target host is already in use, the target host replies negatively. Once a connection is established, data transmission may proceed, controlled by data allocation messages dispatched by the host at the read end of the connection. The host on the write side is constrained by protocol to send only as much data as has been permitted by the read side. If it exhausts the allocation it must wait until a new data allocation control message is received. Then it can send more. One of the problems arises from the fact that messages apparently are lost somewhere in the transmission path with a low but regular frequency. If an allocate control message concerning an open connection is lost, a situation can occur in which data transmission over the connection ceases permanently. This can happen because the host at the send side believes it has exhausted its allocation, and sits holding back data to end because it is waiting for a new data allocation message to come from the read side. However, the read side has actually sent out the allocation, but it was lost. It thinks that the send side may proceed and sits waiting for data to come in over the connection. This is known as the "lost allocate" phenomenon. However, similar symptoms can occur if a data message is lost and the send side exhausts its allocation before a new allocation is given by the read side. The send side waits for a new allocation, but the read side has not received one of the data messages and believes there is still some allocation left. In either case, the result is a permanently blocked connection. This appears to happen with enough regularity to be annoying to users who connect typewriters to foreign hosts through the Network. When it happens, the only current solution is to disconnect and to establish a new connection.Meyer [Page 1]RFC 492 RESPONSE TO RFC 467 18 April 1973 The solution to this problem which RFC 467 proposes is to establish a pair of allocation-resetting control messages, one for use by the send side (RCS) and the other for the read side (RCR). Whenever it wishes, either side may initiate the allocation-resetting sequence by setting its own allocation counter to zero and dispatching an RCS or RCR control message to the other side. The host receiving it will set its own allocation counter for that connection to zero and send an RCR or RCS in reply. Now the allocations for both sides are in synchronization (they are zero), and data transmission can begin again when a new allocation is sent by the receive side. This procedure is intended to be initiated whenever either side thinks the connection has been quiescent for a suspiciously long time. The actual specification of this control message pair in RFC 467 is more complex in that the pipeline between the two sides must be empty of data messages before the send side may dispatch an RCS control message. The second problem arises when the host at one side of an open connection crashes and purges its tables when it comes back up, while the host at the other end of the connection does not notice that anything has happened. (A similar situation occurs when the Network path temporarily fails between the two hosts, but only one host notices the failure and closes the connection.) If the host which crashed attempts to re-establish the connection, the host at the other end refuses to do so because the socket to which the connection request is targeted is seemingly already involved in an open connection. Given the idiosyncrasies of the terminal support software of some systems, users at some consoles may be unable to reconnect to the distant system they were connected with when the local system supporting his terminal crashed. This can continue indefinitely until the system which believes the original connections to be still open resets its internal state. This is call the "half- closed" phenomenon, and a solution is proposed in RFC 467. The basic principle of the RFC 467 proposal is that the side which has the open connection is able to detect an inconsistency whenever either side performs communication regarding this connection. When it does, it is supposed to silently (without regard to normal protocol) close the connection and be ready to handle connection requests to the previously connected port. There are two types of interactions in which "half-closed" inconsistency is uncovered. The first case occurs when the connected side sends a message over a write connection. The side which has lost the connection receives this as a data message which does not correspond to an open connection and replies with an Error Report control message. When the connected side receives it, it realizes that the connection actually no longer exists and deletes it from its own tables. The second case occurs when the host which has lost theMeyer [Page 2]RFC 492 RESPONSE TO RFC 467 18 April 1973 connection sends a connection request to the other host specifying the same sockets as were involved in the previous connection. The host receiving this request recognizes the inconsistency, because not only is the local socket already connected, it is connected to the same foreign socket as specified in the connection request. It internally deletes its record of the connection, making the local socket free, and responds to the connection request normally.COMMENTS AND ALTERNATIVE PROPOSALS The Project MAC Computer Systems Research Division opposes both protocol change proposals in this RFC. We have moderate opposition to the proposal to handle half-closed connections because it fails to consider all aspects of the problem and it further complicates the protocol, but very strong opposition to the proposal for allocation resynchronization because it attacks a symptom, not the disease, and furthermore tends to mask diagnosis of a potentially very serious network problem. RFC 467 proposes the addition of two control messages, Reset Connection by Sender (RCS) and Reset Connection by Receiver (RCR) whose sole purpose is to resynchronize the allocation counters at both ends of a connection. In this way the "lost allocate" phenomenon, in which allocate (ALL) control messages somehow are lost in transmission so that the sending side is unable to continue transmitting data is solved. If it were truly a "lost allocate" problem, this would be viable solution. However, I feel that this is really a "lost message" problem, in which messages of all kinds are being lost in transmission, which is much more serious. ALL messages may be very frequent in communications with some hosts and these may be the ones most often lost, but if messages are actually lost in the network, it may also be data messages that are being lost, which would provide similar symptoms. A lost message in a Telnet connection can be detected and overcome by the human user, but an undetected lost message from the middle of a transmitted file can have disastrous consequences, especially because the invalid file, if ever detected, can perhaps not be corrected. Because this "solution" tends to paper over the immediate problem and to propagate it to a point far removed in both space and time at which it appears as an incomprehensible disaster, it should be strongly opposed. The real problem appears to be the random undetected loss of messages somewhere in the transmission path. A true solution to this problem is either a) to eliminate the cause of undetected loss of messages, or b) to move to a new protocol which is designed to cope with an unreliable physical transmission path. Either of these solutions isMeyer [Page 3]RFC 492 RESPONSE TO RFC 467 18 April 1973 some distance away. A proposed interim solution which modifies the existing GVB and RET commands and which has the additional feature of simplifying them somewhat is outlined below. A receiving host may at an arbitrary time issue a Give-Back allocation (GVB) control message for a connection. 8 8 8 8 +-------+-------+--------+--------+ | GVB | link | f =255 | f =255 | | | | m | b | +-------+-------+--------+--------+ The format of this GVB message is the same as that currently defined, except that the fraction fields f(m) and f(b) are required to all 1s. This is designed to provide a measure of upward compatibility. A host operating under the modified protocol will ignore the fraction fields, but under the current protocol this message means return everything. A sending host which receives a GVB control message immediately ceases transmission on the specified link. When the RFNM from the last message transmitted is received (indicating an empty pipeline), the sending host issues a Return Allocation (RET) control message, returning the remaining allocation.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -