📄 rfc2357.txt
字号:
section).5. Technical Criteria for Reliable Multicast The Internet-Draft must (in itself or a companion draft): a. Analyze the behavior of the protocol. The vulnerabilities and performance problems must be shown through analysis. Especially the protocol behavior must be explained in detail with respect to scalability, congestion control, error recovery, and robustness. For example the following questions should be answered: How scalable is the protocol to the number of senders or receivers in a group, the number of groups, and wide dispersion of group members? Identify the mechanisms which limit scalability and estimate those limits. How does the protocol protect the Internet from congestion? How well does it perform? When does it fail?Mankin, et. al. Informational [Page 6]RFC 2357 Evaluating Reliable Multicast June 1998 Under what circumstances will the protocol fail to perform the functions needed by the applications it serves? Is there a congestion control mechanism? How well does it perform? When does it fail? Note that congestion control mechanisms that operate on the network more aggressively than TCP will face a great burden of proof that they don't threaten network stability. b. Include a description of trials and/or simulations which support the development of the protocol and the answers to the above questions. c. Include an analysis of whether the protocol has congestion avoidance mechanisms strong enough to cope with deployment in the Global Internet, and if not, clearly document the circumstances in which congestion harm can occur. How are these circumstances to be prevented? d. Include a description of any mechanisms which contain the traffic within limited network environments. If the analysis in a or c shows that the protocol has potential to damage the Internet, then the analysis must include a discussion of ways to limit the scope or otherwise contain the protocol. We recognize that the confinement of Internet applications is an open research area. e. Reliable multicast protocols must include an analysis of how they address a number of security and privacy concerns. If the protocol can be used in different modes of secure operation, then each mode must be analyzed. The analysis must document which of the various parties -- senders, routers (more generally, data forwarders), receivers, retransmission sources -- must be trusted in order to ensure secure operation and privacy of the transmitted data, to what degree, and why. (One issue to address here are "man-in-the- middle" attacks.) To what degree can data be manipulated so that at least a subset of the receivers receive different copies? Does the protocol allow a group of receivers to determine whether they all received the same data? What limitations are placed on the retransmission mechanism to prevent it from being abused to flood network links with excessive traffic? Which parties must be trusted to ensure this, and to what degree, and why? The presumption will be that either a congestion control mechanism will inherently limit the volume of retransmission traffic, and that this limitingMankin, et. al. Informational [Page 7]RFC 2357 Evaluating Reliable Multicast June 1998 influence is robust under concerted attack; or that retransmission requests will be signed in a cryptographically strong manner so that abuses of the mechanism can be traced back to their source. Protocols that do not provide either of these forms of protection face a great burden of proof that they don't threaten network stability. What sort of key management does the protocol require, and provide for?6. Security Considerations This memo specifies in Section 5.e. that reliable multicast Internet-Drafts reviewed by the Transport Area Directors must explicitly explore the security aspects of the proposed design.7. Acknowledgments Sally Floyd, Steve McCanne, Mark Handley, Steve Bellovin and Mike Reiter gave especially helpful comments on drafts of this document.8. References [RMMinutes 1997] Minutes the Second Reliable Multicast Research Group Meeting. September 1997. http://www.east.isi.edu/rm [Floyd97] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM Transactions on Networking, December 1997 An online version of the paper is at http://ee.lbl.gov/floyd/srm-paper.html. [InetStdProc96] Bradner, S., "The Internet Standards Process -- Revision 3", RFC 2026, October 1996. [DiffServBOF97] [6] http://www.ietf.org/proceedings/97apr - Transport Area - FDDIFS BOF, April 1997. [DeprRFCs] Freier, A., "Multicast Transport Protocol", RFC 1301, February 1992. and Braudes, R., and S. Zabele, "Requirements for Multicast Protocols", RFC 1458, May 1993. [DiotCrow97] Diot, C., Crowcroft, J., Multicast Transport Survey. Journal of Selected Areas in Communications, 1997. [Obraczka98] Obraczka, K., Multicast Transport Mechanisms: A Survey and Taxonomy. To appear in IEEE Communications, 1998.Mankin, et. al. Informational [Page 8]RFC 2357 Evaluating Reliable Multicast June 1998 [Routing91] Hinden, R., and Internet Engineering Task Force, "Internet Routing Protocol Standardization Criteria", RFC 1264, October 1991. [CongAvoid97] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms", RFC 2001, January 1997. [Jacobson 1988] Jacobson, V., Congestion Avoidance and Control, Proceedings of SIGCOMM '88, August 1988, pp. 314-329. An updated version of this paper is available at "ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z".Mankin, et. al. Informational [Page 9]RFC 2357 Evaluating Reliable Multicast June 19989. Authors' Addresses Allison Mankin - Past TSV Area Director USC/ISI East 4350 N. Fairfax Dr., Suite 620 Arlington VA 22203 USA Phone: 703 812 3706 EMail: mankin@east.isi.edu Allyn Romanow - Past TSV Area Director MCI Corporation 2560 North First Street San Jose, CA 9531 USA Phone: 408 922 7143 EMail: allyn@mci.net Scott Bradner - TSV Co-Area Director Harvard University 1350 Mass. Ave., Rm. 876 Cambridge MA 02138 USA Phone: 617 495 3864 EMail: sob@harvard.edu Vern Paxson - TSV Co-Area Director MS 50B/2239 Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Phone: 510-486-7504 EMail: vern@ee.lbl.govMankin, et. al. Informational [Page 10]RFC 2357 Evaluating Reliable Multicast June 199810. Full Copyright Statement Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Mankin, et. al. Informational [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -