📄 rfc1043.txt
字号:
Network Working Group A. YasudaRequest for Comments: 1043 T. Thompson Defense Intelligence AgencyUpdates: RFC 732 February 1988 TELNET Data Entry Terminal Option DODIIS ImplementationStatus of this Memo This RFC suggests a proposed protocol on the TELNET Data Entry Terminal (DET) Option - DODIIS Implementation for the Internet community. It is intended that this specification be compatible with the specification of DET Option in RFC-732. Discussion and suggestions for improvements are encouraged. Distribution of this memo is unlimited.Introduction In the early 1980s, the Defense Intelligence Agency (DIA) undertook the tasks of developing a TELNET capability to access full screen applications across a packet switching network. This effort was successful by implementing Data Entry Terminal (DET) options within the TELNET protocol based on RFC 732. These DET options have been implemented on IAS, MVS, OS86 and UNIX operating systems. DET options are being developed for VM and VMS operating systems. The Department of Defense Intelligence Information System (DODIIS) is a confederation of heterogeneous computer systems and remote terminals utilizing the Defense Data Network (DDN) as the communications backbone (namely the SCINET/DSNET-3). Although the reason for implementing a DET option specification was based upon data base application interfaces, the use of a full screen TELNET provides a method to achieve higher efficiency on the network. Most terminal to host applications on the ARPANET are character echo TELNETs. This is both costly in time and network utilization, since one character pressed on the keyboard generates a datagram composed of TCP/IP headers plus the character sent to the host and the host echoes back a similar datagram. In the DODIIS community, programmers are highly encouraged to implement full screen applications; line at a time is acceptable; and character remote echo mode is discouraged. This RFC in its final form will be implemented on SCINET. During the interim period, the "DODIIS TELNET Network Virtual Data Entry Terminal (NVDET) Option Specification", DIA, April 1983, will be implemented.Yasuda & Thompson [Page 1]RFC 1043 Data Entry Terminal - DODIIS February 1988 TABLE OF CONTENTS Page No. -------- SECTION 1 COMMAND NAME AND OPTION CODE 4 SECTION 2 COMMAND MEANINGS 4 Facilities Subcommands 4 Edit Subcommands 8 Transmit Subcommands 8 Erase Subcommands 10 Format Subcommands 10 Miscellaneous Subcommands 13 SECTION 3 DEFAULT AND MINIMAL IMPLEMENTATION 15 SECTION 4 MOTIVATION FOR THE OPTION 17 SECTION 5 DESCRIPTION AND IMPLEMENTATION RULES 17 The DODIIS DET Model 17 Negotiating the DET Option 18 DET Facilities Negotiation 18 General DET Interaction 19 Form Construction 20 Form response 21 Function Keys 22 Field Selection 22 Out-Of-Context Data 23 Line Discipline 23 Standard TELNET Control Functions 24 Other Implementation Notes 24 APPENDIX 1 DET OPCODES AND SUBCOMMAND SYNTAX 25 APPENDIX 2 DET ERROR CODES 26Yasuda & Thompson [Page 2]RFC 1043 Data Entry Terminal - DODIIS February 1988 The convention in the documentation of the TELNET NVDET Protocol is to express numbers in decimal. Data fields are described left to right, with the most significant octet on the left and the least significant octet on the right. The order of transmission of the data described in this document is resolved to the octet level. Whenever a diagram shows a group of octets, the order of transmission of those octets is the normal order in which they are read in English. For example, in the following diagram the octets are transmitted in the order they are numbered. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 1 | 2 | 3 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | 6 | 7 | 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 9 | 10 | 11 | 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Transmission Order of Bytes Whenever an octet represents a numeric quantity, the left most bit in the diagram is the high order or most significant bit. That is, the bit labeled 0 is the most significant bit. For example, the following diagram represents the value 170 (decimal). 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ |1 0 1 0 1 0 1 0| +-+-+-+-+-+-+-+-+ Significance of Bits Similarly, whenever a multi-octet field represents a numeric quantity, the left most bit of the whole field is the most significant bit. When a multi-octet quantity is transmitted the most significant octet is transmitted first.Yasuda & Thompson [Page 3]RFC 1043 Data Entry Terminal - DODIIS February 1988 1. Command Name and Option Code DET 20 2. Command Meanings IAC WILL DET The sender of this command REQUESTS permission to begin, or AGREES that it will begin, sending and receiving Data Entry Terminal (DET) subcommands to control session interactions. IAC WONT DET If the connection is already operating in DET mode, the sender of this command DEMANDS that the connection stop operating in DET mode and begin operating in TELNET NVT mode. If the connection is not operating in DET mode, the sender REFUSES to begin operating in DET mode. A connection is operating in TELNET NVT mode when both parties are interpreting data as described by the TELNET SPECIFICATION, MIL-STD-1782. IAC DO DET The sender of this command REQUESTS permission to begin, or AGREES that it will begin, sending and receiving Data Entry Terminal (DET) subcommands to control session interactions. IAC DONT DET If the connection is already operating in DET mode, the sender of this command DEMANDS that the connection stop operating in DET mode and begin operating in TELNET NVT mode. If the connection is not operating in DET mode, the sender REFUSES to begin operating in DET mode. A connection is operating in TELNET NVT mode when both parties are interpreting data as described by the TELNET SPECIFICATION, MIL-STD-1782. DODIIS implementations of the DET option use the subcommands described in the remainder of Section 2. A description of the DODIIS DET model and DET subcommand usage is contained in Section 5. FACILITIES SUBCOMMANDS. Facilities subcommands are used to negotiate DET facilities (subcommands and attributes). The facility subcommands indicate the DET facilities the sender supports. Facility negotiation may be viewed as the terminal indicating the facilities it provides and the application indicating the facilitiesYasuda & Thompson [Page 4]RFC 1043 Data Entry Terminal - DODIIS February 1988 it desires. The bits of the facility maps are numbered from the right starting at zero. Thus, if bit 2 is set, the field will have a decimal value of 4. IAC SB DET EDIT-FACILITIES <facility map> IAC SE subcommand code: 1 This subcommand indicates the edit facilities the sender supports. The <facility map> parameter is one eight bit byte containing the following flags: Bits 5-7 Reserved Bit 4 Read Cursor Bits 0-3 Reserved where: If the Read-Cursor bit is set, the sender supports the READ-CURSOR and CURSOR-POSITION subcommands. Reserved bits represent edit facilities that are not defined for DODIIS implementations; therefore, no descriptions are provided. Reserved bits must be zeroed to indicate non support of the associated edit facilities. IAC SB DET ERASE-FACILITIES <facility map> IAC SE subcommand code: 2 This subcommand indicates the erase facilities the sender supports. The <facility map> parameter is one eight bit byte containing flags. Since no erase facilities are defined for DODIIS implementations, no descriptions are provided. The ERASE-FACILITIES subcommand is part of the minimal DET implementation and is included for that reason. DODISI implementors must declare non support of erase facilities by sending this subcommand with a zeroed facility map. IAC SB DET TRANSMIT-FACILITIES <facility map> IAC SE subcommand code: 3 This subcommand indicates the transmit facilities the sender supports. The <facility map> parameter is one eight bit byte containing the following flags:Yasuda & Thompson [Page 5]RFC 1043 Data Entry Terminal - DODIIS February 1988 Bits 6-7 Reserved Bit 5 Data Transmit Bits 0-4 Reserved where: If the Data-Transmit bit is set, the sender supports the DATA-TRANSMIT subcommand. Reserved bits represent transmit facilities that are not defined for DODIIS implementations; therefore, no descriptions are provided. Reserved bits must be zeroed to indicate non support of the associated transmit facilities. IAC SB DET FORMAT-FACILITIES <facility map> IAC SE subcommand code: 4 This subcommand indicates the format facilities the sender supports. The <facility map> parameter is two eight bit bytes containing the following: Byte 0 Bit 7 Function Key Bit 6 Modified Bit 5 Field Selection Bit 4 Repeat Bit 3 Blinking Bit 2 Reverse Video Bit 1 Right Justification Bit 0 Reserved Byte 1 Bit 7 Reserved for color Bit 6 Reserved Bit 5 Protection Bit 4 Alphabetic-Only Bit 3 Numeric-Only Bits 0-2 Intensity where: If the Function-Key bit is set, the sender supports the FUNCTION-KEY and ENABLE-FUNCTION-KEY subcommands. If the Modified bit is set, the sender supports the FORMAT-DATA subcommand's Modified attribute and theYasuda & Thompson [Page 6]RFC 1043 Data Entry Terminal - DODIIS February 1988 TRANSMIT-MODIFIED subcommand. If the Field-Selection bit is set, the sender supports the FORMAT-DATA subcommand's Selectable attribute and the SELECTED-FIELD subcommand. If the Repeat bit is set the sender supports the REPEAT subcommand. If the Blinking bit is set, the sender requests or provides the ability to emphasize a string of characters by causing them to blink when displayed. (See the FORMAT-DATA subcommand.) If the Reverse-Video bit is set, the sender requests or provides the ability to emphasize a string of characters by "reversing their video image". If characters are normally displayed as dark characters on a light background, they are reversed and displayed as light characters on a dark background, or vice versa. (See the FORMAT-DATA subcommand.) If the Right-Justification bit is set, the sender requests or provides the ability to cause data entered in a field to be right justified within the field. (See the FORMAT-DATA subcommand.) If the Protection bit is set, the sender requests or
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -