📄 rfc2115.txt
字号:
Network Working Group C. BrownRequest for Comments: 2115 Cadia Networks, Inc.Obsoletes: 1315 F. BakerCategory: Standards Track Cisco Systems September 1997 Management Information Base for Frame Relay DTEs Using SMIv21. Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.2. Abstract This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP- based internets. In particular, it defines objects for managing Frame Relay interfaces on DTEs.Table of Contents 1 Status of this Memo ................................... 1 2 Abstract .............................................. 1 3 The SNMPv2 Network Management Framework ............... 2 4 Overview .............................................. 2 4.1 Frame Relay Operational Model ....................... 2 4.2 Textual Conventions ................................. 6 4.3 Structure of MIB .................................... 6 5 Changes from RFC 1315 ................................. 6 6 Definitions ........................................... 8 6.1 Data Link Connection Management Interface ........... 9 6.2 Circuit Table ....................................... 14 6.3 Error Table ......................................... 22 6.4 Trap Management ..................................... 25 7 Security Issues ....................................... 30 8 Acknowledgments ....................................... 30 9 Authors' Addresses .................................... 31 10 References ........................................... 31Brown & Baker Standards Track [Page 1]RFC 2115 Frame Relay DTE MIB September 19973. The SNMPv2 Network Management Framework The major components of the SNMPv2 Network Management framework are described in the documents listed below. o RFC 1902 [1] defines the Structure of Management Information (SMI), the mechanisms used for describing and naming objects for the purpose of management. o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed objects (MO) for the Internet suite of protocols. o RFC 1905 [3] defines the protocol used for network access to managed objects. The framework is adaptable/extensible by defining new MIBs to suit the requirements of specific applications/protocols/situations. Managed objects are accessed via a virtual information store, the MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object type is named by an OBJECT IDENTIFIER, which is an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, often a textual string, termed the descriptor, is used to refer to the object type.4. Overview4.1. Frame Relay Operational Model For the purposes of understanding this document, Frame Relay is viewed as a multi-access media, not as a group of point- to-point connections. This model proposes that Frame Relay is a single interface to the network (physical connection) with many destinations or neighbors (virtual connections). This view enables a network manager the ability to group all virtual connections with their corresponding physical connection thereby allowing simpler diagnostics and trouble shooting. With the extension of the interfaces MIB, it is possible to configure frame relay DLCs as individual interfaces and create ifTable entries for each. This is not recommended and is not directly supported by this MIB. Additionally, in the presence of demand circuits creation of individual ifEntries for each is not possible.Brown & Baker Standards Track [Page 2]RFC 2115 Frame Relay DTE MIB September 1997 Should the user wish to group DLCs together to associate them with a higher layer, or to associate a DLC with an unnumbered point-to-point service, the frame relay DTE MIB provides an entry in the frCircuitEntry record. For example, suppose one were to configure a company proprietary protocol to run above several of the frame relay VCs. The basic layering would look something like the following: IP (ipaddrEntry 1 ) IP (ipaddrEntry 2) IP (ipaddrEntry 3) | | | | | | | | proprietary protocol | | layer (ifIndex 3) | | | | | | DLCI 20 DLCI 30 DLCI 40/41/42 (ifIndex 2) (ifIndex 2) (ifIndex 2, logical ifIndex 3) | | | | | | |____________________|_____________________| | | FR DLMCI (ifIndex.2) | | Physical Interface (ifIndex.1)A configuration which specified that DLCI 40, 41,and 42 were associatedwith a proprietary protocol layer, while DLCI 20 and 30 were to run IPdirectly can now be expressed using a combination of frCircuitIfIndexand frCircuitLogicalIfIndex. In this particular case DLCIs 40, 41 and42 would use frCircuitIfIndex equal to the frame relay interface level(2) while their frCircuitLogicalIfIndex would indicate the proprietaryprotocol (3). DLCIs 20 and 30 would have both instances set to the framerelay interface (2). Object Meaning for Frame Relay Interface ______ _____________________________________ ifDescr As per DESCRIPTION in RFC 1573. ifType The value allocated for Frame Relay Interfaces - frameRelay (32). ifMtu Set to maximum frame size in octets for this frame relay interface.Brown & Baker Standards Track [Page 3]RFC 2115 Frame Relay DTE MIB September 1997 ifSpeed The access rate for the frame relay interface. This could be different from the speed of the underlying physical interface, e.g. in a fractional T1 case the access rate could be 384 kbits/s (the value reported in this object) whereas the speed of the underlying interface would be 1.544 Mbits/s (the value reported in the instance of ifSpeed for the ifEntry with type ds1). ifPhysAddress The primary address for this interface assigned by the Frame Relay interface provider. An octet string of zero length if no address is used for this interface. ifAdminStatus As per DESCRIPTION in RFC 1573. ifOperStatus As per DESCRIPTION in RFC 1573. ifLastChange As per DESCRIPTION in RFC 1573. ifInOctets The number of received octets. This includes not only the information field (user data) but also the frame relay header and CRC. ifInUcastPkts The number of frames received on non- multicast DLCIs ifInDiscards The number of frames that were successfully received but were discarded because of format errors or because the VC was not known. Format errors, in this case, are any errors which would prevent the system from recognizing the DLCI and placing the error in the frCircuitDiscard category. ifInErrors The number of received frames that are discarded, because of an error. Possible errors can be the following: the frame relay frames were too long or were too short, the frames had an invalid or unrecognized DLCI values, or incorrect header values.Brown & Baker Standards Track [Page 4]RFC 2115 Frame Relay DTE MIB September 1997 ifInUnknownProtos Number of unknown or unsupported upper layer protocol frames received and discarded. ifOutOctets The number of received octets. This includes not only the information field (user data) but also the frame relay header and CRC. ifOutUcastpkts The number of frames sent. ifOutDiscards The number of frames discarded in the transmit direction. ifOutErrors The number of frames discarded in the egress direction, because of errors. ifName As per DESCRIPTION in RFC 1573. ifInMulticastPkts The number of unerrored frames received on a multicast DLCI. ifInBroadcastPkts Always zero (0) as there are no broadcast frames. ifOutMulticastPkts The number of frames transmitted over a multicast DLCI. ifOutBroadcastPkts Always zero (0) as there are no broadcast frames. ifHCInOctets Only required when ifSpeed >= 155 Mbits/s. See details for ifInOctets. ifHCOutOctets Only required when ifSpeed >= 155 Mbits/s. See details for ifInOctets. ifLinkUpDownTrapEnble As per DESCRIPTION in RFC 1573. ifHighSpeed The access rate of the frame relay interface measured in Mbits/s. If the access rate is less than 1 Mbits/s, this object returns 0. ifPromiscuousMode Set to false(2). ifConnectorPresent Set to false(2).Brown & Baker Standards Track [Page 5]RFC 2115 Frame Relay DTE MIB September 19974.2. Textual Conventions One new data type is introduced as a textual convention in this MIB document. This textual convention enhances the readability of the specification and can ease comparison with other specifications if appropriate. It should be noted that the introduction of this textual conventions has no effect on either the syntax nor the semantics of any managed objects. The use of this is merely an artifact of the explanatory method used. Objects defined in terms of one of these methods are always encoded by means of the rules that define the primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate this textual conventions which is adopted merely for the convenience of readers and writers in pursuit of the elusive goal of clear, concise, and unambiguous MIB documents. The new data type is DLCI. DLCI refers to the range 0..DLCINumber, and is used to refer to the valid Data Link Connection Indices. DLCINumber is, by definition, the largest possible DLCI value possible under the configured Q.922 Address Format.4.3. Structure of MIB The MIB is composed of three groups, one defining the Data Link Connection Management Interface (DLCMI), one describing the Circuits, and a third describing errors. During normal operation, Frame Relay virtual circuits will be added, deleted and change availability. The occurrence of such changes is of interest to the network manager and therefore, one trap is defined, intended to be corollary to the SNMP "Link Up" and "Link Down" traps.5. Changes from RFC 1315 Below are listed the changes from the previously published version this document, which was RFC 1315: o The MIB module was converted from SMIv1 to SMIv2 format. Note: due to this, the table indices have access of "read-only" instead of "not-accessible", which is the typical value for index objects in SMIv2. o The module name was changed from RFC1315-MIB to FRAME- RELAY-DTE-MIB. o The textual convention "Index" was dropped from the MIB module and "InterfaceIndex" from the interfaces MIB module, IF-MIB, was used in its place.Brown & Baker Standards Track [Page 6]RFC 2115 Frame Relay DTE MIB September 1997 o Objects frDlcmiStatus and frDlcmiRowStatus were added to table frDlcmiTable. o Added values "itut933A(5)" (from CCITT Q933 Annex A) and "ansiT1617D1994(6)" (from ANSI T1.617a-1994 Annex D) to the enumerations for object frDlcmiState. o The labels for the enumerated values for object frDlcmiAddressLen were renamed to remove their hyphens as required by SMIv2. o Added clarification that the "management virtual circuit" (i.e. DLCI 0) is a member of the circuit table. o Added the following objects to table frCircuitTable: frCircuitMulticast, frCircuitType, frCircuitDiscards, frCircuitReceivedDEs, frCircuitSentDEs, frCircuitLogicalIfIndex, and frCircuitRowStatus. o The definition of object frCircuitReceivedOctets was clarified as to which octets were counted. o Added the objects frErrFaults and frErrFaultTime to table frErrTable. o Added clarification to the values of object frErrType. o Added size on definition of object frErrData and clarified what data to capture. o Changed identififier for OID value { frameDelayDTE 4 } from frame-relay-globals to frameRelayTrapControl. o Added object frTrapMaxRate. o Created object groups frPortGroup, frCircuitGroup, frTrapGroup, frErrGroup, frPortGroup0, frCircuitGroup0, frTrapGroup0, and frErrGroup0. o Created notification group frNotificationGroup. o Created module compliances frCompliance and frCompliance0. o Added ranges to objects frCircuitCommittedBurst, frCircuitExcessBurst, and frCircuitThroughput.Brown & Baker Standards Track [Page 7]RFC 2115 Frame Relay DTE MIB September 19976. Definitions FRAME-RELAY-DTE-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, Counter32, Integer32, NOTIFICATION-TYPE FROM SNMPv2-SMI TEXTUAL-CONVENTION, RowStatus, TimeStamp FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF transmission FROM RFC1213-MIB InterfaceIndex FROM IF-MIB; -- Frame Relay DTE MIB frameRelayDTE MODULE-IDENTITY LAST-UPDATED "9705010229Z" -- Thu May 1 02:29:46 PDT 1997 ORGANIZATION "IETF IPLPDN Working Group" CONTACT-INFO " Caralyn Brown Postal: Cadia Networks, Inc. 1 Corporate Drive Andover, Massachusetts 01810 Tel: +1 508 689 2400 x133 E-Mail: cbrown@cadia.com Fred Baker Postal: Cisco Systems 519 Lado Drive Santa Barbara, California 93111 Tel: +1 408 526 425 E-Mail: fred@cisco.com" DESCRIPTION "The MIB module to describe the use of a Frame Relay interface by a DTE." REVISION "9705010229Z" -- Thu May 1 02:29:46 PDT 1997 DESCRIPTION "Converted from SMIv1 to SMIv2. (Thus, indices are read-only rather than being not-accessible.) Added objects and made clarifications based on implementation experience." REVISION "9204010000Z" DESCRIPTION "Published as RFC 1315, the initial version of this MIB module." ::= { transmission 32 }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -