📄 rfc2760.txt
字号:
RTT connections obtaining only a small fraction of their fair share of the bandwidth. One effective solution to this problem is to deploy fair queueing and TCP-friendly buffer management in network routers [Sut98]. However, in the absence of help from the network, other researchers have investigated changes to the congestion avoidance policy at the TCP sender, as described in [Flo91,HK98].3.4.2 Research The "Constant-Rate" increase policy has been studied in [Flo91,HK98]. It attempts to equalize the rate at which TCP senders increase their sending rate during congestion avoidance. Both [Flo91] and [HK98] illustrate cases in which the "Constant-Rate" policy largely corrects the bias against long RTT connections, although [HK98] presents some evidence that such a policy may be difficult to incrementally deploy in an operational network. The proper selection of a constant (for the constant rate of increase) is an open issue. The "Increase-by-K" policy can be selectively used by long RTT connections in a heterogeneous environment. This policy simply changes the slope of the linear increase, with connections over a given RTT threshold adding "K" segments to the congestion window every RTT, instead of one. [HK98] presents evidence that this policy, when used with small values of "K", may be successful in reducing the unfairness while keeping the link utilization high, when a small number of connections share a bottleneck link. The selection of the constant "K," the RTT threshold to invoke this policy, and performance under a large number of flows are all open issues.Allman, et al. Informational [Page 21]RFC 2760 Ongoing TCP Research Related to Satellites February 20003.4.3 Implementation Issues Implementation of either the "Constant-Rate" or "Increase-by-K" policies requires a change to the congestion avoidance mechanism at the TCP sender. In the case of "Constant-Rate," such a change must be implemented globally. Additionally, the TCP sender must have a reasonably accurate estimate of the RTT of the connection. The algorithms outlined above violate the congestion avoidance algorithm as outlined in RFC 2581 [APS99] and therefore should not be implemented in shared networks at this time.3.4.4 Topology Considerations These solutions are applicable to all satellite networks that are integrated with a terrestrial network, in which satellite connections may be competing with terrestrial connections for the same bottleneck link.3.4.5 Possible Interaction and Relationships with Other Research As shown in [PADHV99], increasing the congestion window by multiple segments per RTT can cause TCP to drop multiple segments and force a retransmission timeout in some versions of TCP. Therefore, the above changes to the congestion avoidance algorithm may need to be accompanied by a SACK-based loss recovery algorithm that can quickly repair multiple dropped segments.3.5 Multiple Data Connections3.5.1 Mitigation Description One method that has been used to overcome TCP's inefficiencies in the satellite environment is to use multiple TCP flows to transfer a given file. The use of N TCP connections makes the sender N times more aggressive and therefore can improve throughput in some situations. Using N multiple TCP connections can impact the transfer and the network in a number of ways, which are listed below. 1. The transfer is able to start transmission using an effective congestion window of N segments, rather than a single segment as one TCP flow uses. This allows the transfer to more quickly increase the effective cwnd size to an appropriate size for the given network. However, in some circumstances an initial window of N segments is inappropriate for the network conditions. In this case, a transfer utilizing more than one connection may aggravate congestion.Allman, et al. Informational [Page 22]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 2. During the congestion avoidance phase, the transfer increases the effective cwnd by N segments per RTT, rather than the one segment per RTT increase that a single TCP connection provides. Again, this can aid the transfer by more rapidly increasing the effective cwnd to an appropriate point. However, this rate of increase can also be too aggressive for the network conditions. In this case, the use of multiple data connections can aggravate congestion in the network. 3. Using multiple connections can provide a very large overall congestion window. This can be an advantage for TCP implementations that do not support the TCP window scaling extension [JBB92]. However, the aggregate cwnd size across all N connections is equivalent to using a TCP implementation that supports large windows. 4. The overall cwnd decrease in the face of dropped segments is reduced when using N parallel connections. A single TCP connection reduces the effective size of cwnd to half when a single segment loss is detected. When utilizing N connections each using a window of W bytes, a single drop reduces the window to: (N * W) - (W / 2) Clearly this is a less dramatic reduction in the effective cwnd size than when using a single TCP connection. And, the amount by which the cwnd is decreased is further reduced by increasing N. The use of multiple data connections can increase the ability of non-SACK TCP implementations to quickly recover from multiple dropped segments without resorting to a timeout, assuming the dropped segments cross connections. The use of multiple parallel connections makes TCP overly aggressive for many environments and can contribute to congestive collapse in shared networks [FF99]. The advantages provided by using multiple TCP connections are now largely provided by TCP extensions (larger windows, SACKs, etc.). Therefore, the use of a single TCP connection is more "network friendly" than using multiple parallel connections. However, using multiple parallel TCP connections may provide performance improvement in private networks.Allman, et al. Informational [Page 23]RFC 2760 Ongoing TCP Research Related to Satellites February 20003.5.2 Research Research on the use of multiple parallel TCP connections shows improved performance [IL92,Hah94,AOK95,AKO96]. In addition, research has shown that multiple TCP connections can outperform a single modern TCP connection (with large windows and SACK) [AHKO97]. However, these studies did not consider the impact of using multiple TCP connections on competing traffic. [FF99] argues that using multiple simultaneous connections to transfer a given file may lead to congestive collapse in shared networks.3.5.3 Implementation Issues To utilize multiple parallel TCP connections a client application and the corresponding server must be customized. As outlined in [FF99] using multiple parallel TCP connections is not safe (from a congestion control perspective) in shared networks and should not be used.3.5.4 Topological Considerations As stated above, [FF99] outlines that the use of multiple parallel connections in a shared network, such as the Internet, may lead to congestive collapse. However, the use of multiple connections may be safe and beneficial in private networks. The specific topology being used will dictate the number of parallel connections required. Some work has been done to determine the appropriate number of connections on the fly [AKO96], but such a mechanism is far from complete.3.5.5 Possible Interaction and Relationships with Other Research Using multiple concurrent TCP connections enables use of a large congestion window, much like the TCP window scaling option [JBB92]. In addition, a larger initial congestion window is achieved, similar to using [AFP98] or TCB sharing (see section 3.8).3.6 Pacing TCP Segments3.6.1 Mitigation Description Slow-start takes several round trips to fully open the TCP congestion window over routes with high bandwidth-delay products. For short TCP connections (such as WWW traffic with HTTP/1.0), the slow-start overhead can preclude effective use of the high-bandwidth satellite links. When senders implement slow-start restart after a TCP connection goes idle (suggested by Jacobson and Karels [JK92]),Allman, et al. Informational [Page 24]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 performance is reduced in long-lived (but bursty) connections (such as HTTP/1.1, which uses persistent TCP connections to transfer multiple WWW page elements) [Hei97a]. Rate-based pacing (RBP) is a technique, used in the absence of incoming ACKs, where the data sender temporarily paces TCP segments at a given rate to restart the ACK clock. Upon receipt of the first ACK, pacing is discontinued and normal TCP ACK clocking resumes. The pacing rate may either be known from recent traffic estimates (when restarting an idle connection or from recent prior connections), or may be known through external means (perhaps in a point-to-point or point-to-multipoint satellite network where available bandwidth can be assumed to be large). In addition, pacing data during the first RTT of a transfer may allow TCP to make effective use of high bandwidth-delay links even for short transfers. However, in order to pace segments during the first RTT a TCP will have to be using a non-standard initial congestion window and a new mechanism to pace outgoing segments rather than send them back-to-back. Determining an appropriate size for the initial cwnd is an open research question. Pacing can also be used to reduce bursts in general (due to buggy TCPs or byte counting, see section 3.2.2 for a discussion on byte counting).3.6.2 Research Simulation studies of rate-paced pacing for WWW-like traffic have shown reductions in router congestion and drop rates [VH97a]. In this environment, RBP substantially improves performance compared to slow-start-after-idle for intermittent senders, and it slightly improves performance over burst-full-cwnd-after-idle (because of drops) [VH98]. More recently, pacing has been suggested to eliminate burstiness in networks with ACK filtering [BPK97].3.6.3 Implementation Issues RBP requires only sender-side changes to TCP. Prototype implementations of RBP are available [VH97b]. RBP requires an additional sender timer for pacing. The overhead of timer-driven data transfer is often considered too high for practical use. Preliminary experiments suggest that in RBP this overhead is minimal because RBP only requires this timer for one RTT of transmission [VH98]. RBP is expected to make TCP more conservative in sending bursts of data after an idle period in hosts that do not revert to slow start after an idle period. On the other hand, RBP makes TCP more aggressive if the sender uses the slow start algorithm to start the ACK clock after a long idle period.Allman, et al. Informational [Page 25]RFC 2760 Ongoing TCP Research Related to Satellites February 20003.6.4 Topology Considerations RBP could be used to restart idle TCP connections for all topologies in Section 2. Use at the beginning of new connections would be restricted to topologies where available bandwidth can be estimated out-of-band.3.6.5 Possible Interaction and Relationships with Other Research Pacing segments may benefit from sharing state amongst various flows between two hosts, due to the time required to determine the needed information. Additionally, pacing segments, rather than sending back-to-back segments, may make estimating the available bandwidth (as outlined in section 3.2.4) more difficult.3.7 TCP Header Compression The TCP and IP header information needed to reliably deliver packets to a remote site across the Internet can add significant overhead, especially for interactive applications. Telnet packets, for example, typically carry only a few bytes of data per packet, and standard IPv4/TCP headers add at least 40 bytes to this; IPv6/TCP headers add at least 60 bytes. Much of this information rema
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -