📄 rfc2760.txt
字号:
3.2.4.1 Mitigation Description The initial slow start phase is used by TCP to determine an appropriate congestion window size for the given network conditions [Jac88]. Slow start is terminated when TCP detects congestion, or when the size of cwnd reaches the size of the receiver's advertised window. Slow start is also terminated if cwnd grows beyond a certain size. The threshold at which TCP ends slow start and begins using the congestion avoidance algorithm is called "ssthresh" [Jac88]. In most implementations, the initial value for ssthresh is the receiver's advertised window. During slow start, TCP roughly doubles the size of cwnd every RTT and therefore can overwhelm the network with at most twice as many segments as the network can handle. By setting ssthresh to a value less than the receiver's advertised window initially, the sender may avoid overwhelming the network with twice the appropriate number of segments. Hoe [Hoe96] proposes using the packet-pair algorithm [Kes91] and the measured RTT to determine a more appropriate value for ssthresh. The algorithm observes the spacing between the first few returning ACKs to determine the bandwidth of the bottleneck link. Together with the measured RTT, the delay*bandwidth product is determined and ssthresh is set to this value. When TCP's cwnd reaches this reduced ssthresh, slow start is terminated and transmission continues using congestion avoidance, which is a more conservative algorithm for increasing the size of the congestion window.3.2.4.2 Research It has been shown that estimating ssthresh can improve performance and decrease packet loss in simulations [Hoe96]. However, obtaining an accurate estimate of the available bandwidth in a dynamic network is very challenging, especially attempting to do so on the sending side of the TCP connection [AP99]. Therefore, before this mechanism is widely deployed, bandwidth estimation must be studied in a more detail.3.2.4.3 Implementation Issues As outlined in [Hoe96], estimating ssthresh requires changes to the data sender's TCP stack. As suggested in [AP99], bandwidth estimates may be more accurate when taken by the TCP receiver, and therefore both sender and receiver changes would be required. EstimatingAllman, et al. Informational [Page 11]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 ssthresh is safe to implement in production networks from a congestion control perspective, as it can only make TCP more conservative than outlined in RFC 2581 [APS99] (assuming the TCP implementation is using an initial ssthresh of infinity as allowed by [APS99]).3.2.4.4 Topology Considerations It is expected that this mechanism will work equally well in all symmetric topologies outlined in section 2. However, asymmetric links pose a special problem, as the rate of the returning ACKs may not be the bottleneck bandwidth in the forward direction. This can lead to the sender setting ssthresh too low. Premature termination of slow start can hurt performance, as congestion avoidance opens cwnd more conservatively. Receiver-based bandwidth estimators do not suffer from this problem.3.2.4.5 Possible Interaction and Relationships with Other Research Terminating slow start at the right time is useful to avoid multiple dropped segments. However, using a selective acknowledgment-based loss recovery scheme (as outlined in section 3.3.2) can drastically improve TCP's ability to quickly recover from multiple lost segments Therefore, it may not be as important to terminate slow start before a large loss event occurs. [AP99] shows that using delayed acknowledgments [Bra89] reduces the effectiveness of sender-side bandwidth estimation. Therefore, using delayed ACKs only during slow start (as outlined in section 3.2.3) may make bandwidth estimation more feasible.3.3 Loss Recovery3.3.1 Non-SACK Based Mechanisms3.3.1.1 Mitigation Description Several similar algorithms have been developed and studied that improve TCP's ability to recover from multiple lost segments in a window of data without relying on the (often long) retransmission timeout. These sender-side algorithms, known as NewReno TCP, do not depend on the availability of selective acknowledgments (SACKs) [MMFR96]. These algorithms generally work by updating the fast recovery algorithm to use information provided by "partial ACKs" to trigger retransmissions. A partial ACK covers some new data, but not all data outstanding when a particular loss event starts. For instance, consider the case when segment N is retransmitted using the fastAllman, et al. Informational [Page 12]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 retransmit algorithm and segment M is the last segment sent when segment N is resent. If segment N is the only segment lost, the ACK elicited by the retransmission of segment N would be for segment M. If, however, segment N+1 was also lost, the ACK elicited by the retransmission of segment N will be N+1. This can be taken as an indication that segment N+1 was lost and used to trigger a retransmission.3.3.1.2 Research Hoe [Hoe95,Hoe96] introduced the idea of using partial ACKs to trigger retransmissions and showed that doing so could improve performance. [FF96] shows that in some cases using partial ACKs to trigger retransmissions reduces the time required to recover from multiple lost segments. However, [FF96] also shows that in some cases (many lost segments) relying on the RTO timer can improve performance over simply using partial ACKs to trigger all retransmissions. [HK99] shows that using partial ACKs to trigger retransmissions, in conjunction with SACK, improves performance when compared to TCP using fast retransmit/fast recovery in a satellite environment. Finally, [FH99] describes several slightly different variants of NewReno.3.3.1.3 Implementation Issues Implementing these fast recovery enhancements requires changes to the sender-side TCP stack. These changes can safely be implemented in production networks and are allowed by RFC 2581 [APS99].3.3.1.4 Topology Considerations It is expected that these changes will work well in all environments outlined in section 2.3.3.1.5 Possible Interaction and Relationships with Other Research See section 3.3.2.2.5.3.3.2 SACK Based Mechanisms3.3.2.1 Fast Recovery with SACK3.3.2.1.1 Mitigation Description Fall and Floyd [FF96] describe a conservative extension to the fast recovery algorithm that takes into account information provided by selective acknowledgments (SACKs) [MMFR96] sent by the receiver. The algorithm starts after fast retransmit triggers the resending of aAllman, et al. Informational [Page 13]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 segment. As with fast retransmit, the algorithm cuts cwnd in half when a loss is detected. The algorithm keeps a variable called "pipe", which is an estimate of the number of outstanding segments in the network. The pipe variable is decremented by 1 segment for each duplicate ACK that arrives with new SACK information. The pipe variable is incremented by 1 for each new or retransmitted segment sent. A segment may be sent when the value of pipe is less than cwnd (this segment is either a retransmission per the SACK information or a new segment if the SACK information indicates that no more retransmits are needed). This algorithm generally allows TCP to recover from multiple segment losses in a window of data within one RTT of loss detection. Like the forward acknowledgment (FACK) algorithm described below, the SACK information allows the pipe algorithm to decouple the choice of when to send a segment from the choice of what segment to send. [APS99] allows the use of this algorithm, as it is consistent with the spirit of the fast recovery algorithm.3.3.2.1.2 Research [FF96] shows that the above described SACK algorithm performs better than several non-SACK based recovery algorithms when 1--4 segments are lost from a window of data. [AHKO97] shows that the algorithm improves performance over satellite links. Hayes [Hay97] shows the in certain circumstances, the SACK algorithm can hurt performance by generating a large line-rate burst of data at the end of loss recovery, which causes further loss.3.3.2.1.3 Implementation Issues This algorithm is implemented in the sender's TCP stack. However, it relies on SACK information generated by the receiver. This algorithm is safe for shared networks and is allowed by RFC 2581 [APS99].3.3.2.1.4 Topology Considerations It is expected that the pipe algorithm will work equally well in all scenarios presented in section 2.3.3.2.1.5 Possible Interaction and Relationships with Other Research See section 3.3.2.2.5.Allman, et al. Informational [Page 14]RFC 2760 Ongoing TCP Research Related to Satellites February 20003.3.2.2 Forward Acknowledgments3.3.2.2.1 Mitigation Description The Forward Acknowledgment (FACK) algorithm [MM96a,MM96b] was developed to improve TCP congestion control during loss recovery. FACK uses TCP SACK options to glean additional information about the congestion state, adding more precise control to the injection of data into the network during recovery. FACK decouples the congestion control algorithms from the data recovery algorithms to provide a simple and direct way to use SACK to improve congestion control. Due to the separation of these two algorithms, new data may be sent during recovery to sustain TCP's self-clock when there is no further data to retransmit. The most recent version of FACK is Rate-Halving [MM96b], in which one packet is sent for every two ACKs received during recovery. Transmitting a segment for every-other ACK has the result of reducing the congestion window in one round trip to half of the number of packets that were successfully handled by the network (so when cwnd is too large by more than a factor of two it still gets reduced to half of what the network can sustain). Another important aspect of FACK with Rate-Halving is that it sustains the ACK self-clock during recovery because transmitting a packet for every-other ACK does not require half a cwnd of data to drain from the network before transmitting, as required by the fast recovery algorithm [Ste97,APS99]. In addition, the FACK with Rate-Halving implementation provides Thresholded Retransmission to each lost segment. "Tcprexmtthresh" is the number of duplicate ACKs required by TCP to trigger a fast retransmit and enter recovery. FACK applies thresholded retransmission to all segments by waiting until tcprexmtthresh SACK blocks indicate that a given segment is missing before resending the segment. This allows reasonable behavior on links that reorder segments. As described above, FACK sends a segment for every second ACK received during recovery. New segments are transmitted except when tcprexmtthresh SACK blocks have been observed for a dropped segment, at which point the dropped segment is retransmitted. [APS99] allows the use of this algorithm, as it is consistent with the spirit of the fast recovery algorithm.3.3.2.2.2 Research The original FACK algorithm is outlined in [MM96a]. The algorithm was later enhanced to include Rate-Halving [MM96b]. The real-world performance of FACK with Rate-Halving was shown to be much closer toAllman, et al. Informational [Page 15]RFC 2760 Ongoing TCP Research Related to Satellites February 2000 the theoretical maximum for TCP than either TCP Reno or the SACK- based extensions to fast recovery outlined in section 3.3.2.1 [MSMO97].3.3.2.2.3 Implementation Issues In order to use FACK, the sender's TCP stack must be modified. In addition, the receiver must be able to generate SACK options to obtain the full benefit of using FACK. The FACK algorithm is safe for shared networks and is allowed by RFC 2581 [APS99].3.3.2.2.4 Topology Considerations
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -