📄 rfc2757.txt
字号:
connections to continue on, say, a wireless WAN. This type of agility also requires Mobile IP [RFC2002].1.2 Assumptions about the Radio Link The system architecture described above assumes at most one wireless link (perhaps comprising more than one wireless hop). However, this is not enough to characterize a wireless link. Additional considerations are: - What are the error characteristics of the wireless medium? The link may present a higher BER than a wireline network due to burst errors and disconnections. The techniques below usually do not address all the types of errors. Accordingly, a complete solution should combine the best of all the proposals. Nevertheless, in this document we are more concerned with (and give preference to solving) the most typical case: (1) higher BER due to random errors (which implies longer and more variable delays due to link-layer error corrections and retransmissions) rather than (2) an interruption in service due to a handoff or a disconnection. The latter are also important and we do include relevant proposals in this survey. - Is the wireless service datagram oriented, or is it a virtual circuit? Currently, switched virtual circuits are more common, but packet networks are starting to appear, for example, Metricom's Starmode [CB96], CDPD [CDPD] and General Packet Radio Service (GPRS) [GPRS],[BW97] in GSM. - What kind of reliability does the link provide? Wireless services typically retransmit a packet (frame) until it has been acknowledged by the target. They may allow the user to turn off this behavior. For example, GSM allows RLP [RLP] (Radio Link Protocol) to be turned off. Metricom has a similar "lightweight" mode. In GSM RLP, a frame is retransmitted until the maximum number of retransmissions (protocol parameter) is reached. What happens when this limit is reached is determined by the telecom operator: the physical link connection is either disconnected or a link reset is enforced where the sequence numbers are resynchronized and the transmit and receive buffers are flushed resulting in lost data. Some wireless services, like CDMA IS95-RLP [CDMA, Karn93], limit the latency on the wireless link by retransmitting a frame only a couple of times. This decreases the residual frame error rate significantly, but does not provide fully reliable link service.Montenegro, et al. Informational [Page 6]RFC 2757 Long Thin Networks January 2000 - Does the mobile device transmit and receive at the same time? Doing so increases the cost of the electronics on the mobile device. Typically, this is not the case. We assume in this document that mobile devices do not transmit and receive simultaneously. - Does the mobile device directly address more than one peer on the wireless link? Packets to each different peer may traverse spatially distinct wireless paths. Accordingly, the path to each peer may exhibit very different characteristics. Quite commonly, the mobile device addresses only one peer (the intermediate node) at any given point in time. When this is not the case, techniques such as Channel-State Dependent Packet Scheduling come into play (see the section "Packet Scheduling" below).2 Should it be IP or Not? The first decision is whether to use IP as the underlying network protocol or not. In particular, some data protocols evolved from wireless telephony are not always -- though at times they may be -- layered on top of IP [MOWGLI, WAP]. These proposals are based on the concept of proxies that provide adaptation services between the wireless and wireline segments. This is a reasonable model for mobile devices that always communicate through the proxy. However, we expect many wireless mobile devices to utilize wireline networks whenever they are available. This model closely follows current laptop usage patterns: devices typically utilize LANs, and only resort to dial-up access when "out of the office." For these devices, an architecture that assumes IP is the best approach, because it will be required for communications that do not traverse the intermediate node (for example, upon reconnection to a W-LAN or a 10BaseT network at the office).2.1 Underlying Network Error Characteristics Using IP as the underlying network protocol requires a certain (low) level of link robustness that is expected of wireless links. IP, and the protocols that are carried in IP packets, are protected end-to-end by checksums that are relatively weak [Stevens94, Paxson97] (and, in some cases, optional). For much of the Internet, these checksums are sufficient; in wireless environments, the error characteristics of the raw wireless link are much less robust than the rest of the end-to-end path. Hence for paths that includeMontenegro, et al. Informational [Page 7]RFC 2757 Long Thin Networks January 2000 wireless links, exclusively relying on end-to-end mechanisms to detect and correct transmission errors is undesirable. These should be complemented by local link-level mechanisms. Otherwise, damaged IP packets are propagated through the network only to be discarded at the destination host. For example, intermediate routers are required to check the IP header checksum, but not the UDP or TCP checksums. Accordingly, when the payload of an IP packet is corrupted, this is not detected until the packet arrives at its ultimate destination. A better approach is to use link-layer mechanisms such as FEC, retransmissions, and so on in order to improve the characteristics of the wireless link and present a much more reliable service to IP. This approach has been taken by CDPD, Ricochet and CDMA. This approach is roughly analogous to the successful deployment of Point-to-Point Protocol (PPP), with robust framing and 16-bit checksumming, on wireline networks as a replacement for the Serial Line Interface Protocol (SLIP), with only a single framing byte and no checksumming. [AGS98] recommends the use of FEC in satellite environments. Notice that the link-layer could adapt its frame size to the prevalent BER. It would perform its own fragmentation and reassembly so that IP could still enjoy a large enough MTU size [LS98]. A common concern for using IP as a transport is the header overhead it implies. Typically, the underlying link-layer appears as PPP [RFC1661] to the IP layer above. This allows for header compression schemes [IPHC, IPHC-RTP, IPHC-PPP] which greatly alleviate the problem.2.2 Non-IP Alternatives A number of non-IP alternatives aimed at wireless environments have been proposed. One representative proposal is discussed here.2.2.1 WAP The Wireless Application Protocol (WAP) specifies an application framework and network protocols for wireless devices such as mobile telephones, pagers, and PDAs [WAP]. The architecture requires a proxy between the mobile device and the server. The WAP protocol stack is layered over a datagram transport service. Such a service is provided by most wireless networks; for example, IS-136, GSM SMS/USSD, and UDP in IP networks like CDPD and GSM GPRS. The core ofMontenegro, et al. Informational [Page 8]RFC 2757 Long Thin Networks January 2000 the WAP protocols is a binary HTTP/1.1 protocol with additional features such as header caching between requests and a shared state between client and server.2.2.2 Deploying Non-IP Alternatives IP is such a fundamental element of the Internet that non-IP alternatives face substantial obstacles to deployment, because they do not exploit the IP infrastructure. Any non-IP alternative that is used to provide gatewayed access to the Internet must map between IP addresses and non-IP addresses, must terminate IP-level security at a gateway, and cannot use IP-oriented discovery protocols (Dynamic Host Configuration Protocol, Domain Name Services, Lightweight Directory Access Protocol, Service Location Protocol, etc.) without translation at a gateway. A further complexity occurs when a device supports both wireless and wireline operation. If the device uses IP for wireless operation, uninterrupted operation when the device is connected to a wireline network is possible (using Mobile IP). If a non-IP alternative is used, this switchover is more difficult to accomplish. Non-IP alternatives face the burden of proof that IP is so ill-suited to a wireless environment that it is not a viable technology.2.3 IP-based Considerations Given its worldwide deployment, IP is an obvious choice for the underlying network technology. Optimizations implemented at this level benefit traditional Internet application protocols as well as new ones layered on top of IP or UDP.2.3.1 Choosing the MTU [Stevens94, RFC1144] In slow networks, the time required to transmit the largest possible packet may be considerable. Interactive response time should not exceed the well-known human factors limit of 100 to 200 ms. This should be considered the maximum time budget to (1) send a packet and (2) obtain a response. In most networking stack implementations, (1) is highly dependent on the maximum transmission unit (MTU). In the worst case, a small packet from an interactive application may have to wait for a large packet from a bulk transfer application before being sent. Hence, a good rule of thumb is to choose an MTU such that its transmission time is less than (or not much larger than) 200 ms.Montenegro, et al. Informational [Page 9]RFC 2757 Long Thin Networks January 2000 Of course, compression and type-of-service queuing (whereby interactive data packets are given a higher priority) may alleviate this problem. In particular, the latter may reduce the average wait time to about half the MTU's transmission time.2.3.2 Path MTU Discovery [RFC1191] Path MTU discovery benefits any protocol built on top of IP. It allows a sender to determine what the maximum end-to-end transmission unit is to a given destination. Without Path MTU discovery, the default IPv4 MTU size is 576. The benefits of using a larger MTU are: - Smaller ratio of header overhead to data - Allows TCP to grow its congestion window faster, since it increases in units of segments. Of course, for a given BER, a larger MTU has a correspondingly larger probability of error within any given segment. The BER may be reduced using lower level techniques like FEC and link-layer retransmissions. The issue is that now delays may become a problem due to the additional retransmissions, and the fact that packet transmission time increases with a larger MTU. Recommendation: Path MTU discovery is recommended. [AGS98] already recommends its use in satellite environments.2.3.3 Non-TCP Proposals Other proposals assume an underlying IP datagram service, and implement an optimized transport either directly on top of IP [NETBLT] or on top of UDP [MNCP]. Not relying on TCP is a bold move, given the wealth of experience and research related to it. It could be argued that the Internet has not collapsed because its main protocol, TCP, is very careful in how it uses the network, and generally treats it as a black box assuming all packet losses are due to congestion and prudently backing off. This avoids further congestion. However, in the wireless medium, packet losses may also be due to corruption due to high BER, fading, and so on. Here, the right approach is to try harder, instead of backing off. Alternative transport protocols are: - NETBLT [NETBLT, RFC1986, RFC1030] - MNCP [MNCP]Montenegro, et al. Informational [Page 10]RFC 2757 Long Thin Networks January 2000 - ESRO [RFC2188] - RDP [RFC908, RFC1151] - VMTP [VMTP]3 The Case for TCP This is one of the most hotly debated issues in the wireless arena. Here are some arguments against it:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -