📄 rfc1398.txt
字号:
Network Working Group F. KastenholzRequest for Comments: 1398 FTP Software, Inc.Obsoletes: 1284 January 1993 Definitions of Managed Objects for the Ethernet-like Interface TypesStatus of this Memo This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing ethernet-like objects.Table of Contents 1. The Network Management Framework ...................... 1 2. Objects ............................................... 2 2.1 Format of Definitions ................................ 2 3. Overview .............................................. 3 4. Definitions ........................................... 4 4.1 The Ethernet-like Statistics Group ................... 4 4.2 The Ethernet-like Collision Statistics Group ......... 11 4.3 802.3 Tests .......................................... 12 4.4 802.3 Hardware Chipsets .............................. 14 5. Change Log ............................................ 14 6. Acknowledgements ...................................... 16 7. References ............................................ 16 8. Security Considerations ............................... 17 9. Author's Address ...................................... 171. The Network Management Framework The Internet-standard Network Management Framework consists of three components. They are: STD 16/RFC 1155 [3] which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. STD 16/RFC 1212 [13] defines a more concise description mechanism, which is wholly consistent with the SMI.Kastenholz [Page 1]RFC 1398 Ethernet-Like MIB January 1993 RFC 1156 [4] which defines MIB-I, the core set of managed objects for the Internet suite of protocols. STD 17/RFC 1213 [6] defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements. STD 15/RFC 1157 [5] which defines the SNMP, the protocol used for network access to managed objects. The Framework permits new objects to be defined for the purpose of experimentation and evaluation.2. Objects Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type. The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity. The encoding of an object type is simply how that object type is represented using the object type's syntax. Implicitly tied to the notion of an object type's syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP.2.1. Format of Definitions Section 4 contains contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [13].Kastenholz [Page 2]RFC 1398 Ethernet-Like MIB January 19933. Overview Instances of these object types represent attributes of an interface to an ethernet-like communications medium. At present, ethernet-like media are identified by three values of the ifType object in the Internet-standard MIB: ethernet-csmacd(6) iso88023-csmacd(7) starLan(11) For these interfaces, the value of the ifSpecific variable in the MIB-II [6] has the OBJECT IDENTIFIER value: dot3 OBJECT IDENTIFER ::= { transmission 7 } The definitions presented here are based on the IEEE 802.3 Layer Management Specification [9], as originally interpreted by Frank Kastenholz of Interlan in [10]. Implementors of these MIB objects should note that the IEEE document explicitly describes (in the form of Pascal pseudocode) when, where, and how various MAC attributes are measured. The IEEE document also describes the effects of MAC actions that may be invoked by manipulating instances of the MIB objects defined here. To the extent that some of the attributes defined in [9] are represented by previously defined objects in the Internet- standard MIB or in the Generic Interface Extensions MIB [11], such attributes are not redundantly represented by objects defined in this memo. Among the attributes represented by objects defined in other memos are the number of octets transmitted or received on a particular interface, the number of frames transmitted or received on a particular interface, the promiscuous status of an interface, the MAC address of an interface, and multicast information associated with an interface. The relationship between an ethernet-like interface and an interface in the context of the Internet-standard MIB is one-to-one. As such, the value of an ifIndex object instance can be directly used to identify corresponding instances of the objects defined herein.Kastenholz [Page 3]RFC 1398 Ethernet-Like MIB January 19934. Definitions RFC1398-MIB DEFINITIONS ::= BEGIN IMPORTS Counter, Gauge FROM RFC1155-SMI transmission FROM RFC1213-MIB OBJECT-TYPE FROM RFC-1212; -- This MIB module uses the extended OBJECT-TYPE macro as -- defined in RFC-1212. -- this is the MIB module for ethernet-like objects dot3 OBJECT IDENTIFIER ::= { transmission 7 } -- { dot3 1 } is obsolete and has been deleted.4.1. The Ethernet-like Statistics Group -- the Ethernet-like Statistics group -- Implementation of this group is mandatory dot3StatsTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot3StatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Statistics for a collection of ethernet-like interfaces attached to a particular system." ::= { dot3 2 } dot3StatsEntry OBJECT-TYPE SYNTAX Dot3StatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Statistics for a particular interface to an ethernet-like medium." INDEX { dot3StatsIndex } ::= { dot3StatsTable 1 }Kastenholz [Page 4]RFC 1398 Ethernet-Like MIB January 1993 Dot3StatsEntry ::= SEQUENCE { dot3StatsIndex INTEGER, dot3StatsAlignmentErrors Counter, dot3StatsFCSErrors Counter, dot3StatsSingleCollisionFrames Counter, dot3StatsMultipleCollisionFrames Counter, dot3StatsSQETestErrors Counter, dot3StatsDeferredTransmissions Counter, dot3StatsLateCollisions Counter, dot3StatsExcessiveCollisions Counter, dot3StatsInternalMacTransmitErrors Counter, dot3StatsCarrierSenseErrors Counter, dot3StatsFrameTooLongs Counter, dot3StatsInternalMacReceiveErrors Counter } dot3StatsIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "An index value that uniquely identifies an interface to an ethernet-like medium. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { dot3StatsEntry 1 } dot3StatsAlignmentErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of frames received on a particularKastenholz [Page 5]RFC 1398 Ethernet-Like MIB January 1993 interface that are not an integral number of octets in length and do not pass the FCS check. The count represented by an instance of this object is incremented when the alignmentError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions obtain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC." REFERENCE "IEEE 802.3 Layer Management" ::= { dot3StatsEntry 2 } dot3StatsFCSErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of frames received on a particular interface that are an integral number of octets in length but do not pass the FCS check. The count represented by an instance of this object is incremented when the frameCheckError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions obtain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC."
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -