📄 rfc2182.txt
字号:
Network Working Group R. ElzRequest for Comments: 2182 University of MelbourneBCP: 16 R. BushCategory: Best Current Practice RGnet, Inc. S. Bradner Harvard University M. Patton Consultant July 1997 Selection and Operation of Secondary DNS ServersStatus of this Memo This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited.Abstract The Domain Name System requires that multiple servers exist for every delegated domain (zone). This document discusses the selection of secondary servers for DNS zones. Both the physical and topological location of each server are material considerations when selecting secondary servers. The number of servers appropriate for a zone is also discussed, and some general secondary server maintenance issues considered.Elz, et al. Best Current Practice [Page 1]RFC 2182 Selection and Operation of Secondary DNS Servers July 1997Contents Abstract ................................................... 1 1 Introduction ............................................... 2 2 Definitions ................................................ 2 3 Secondary Servers .......................................... 3 4 Unreachable servers ........................................ 5 5 How many secondaries? ...................................... 7 6 Finding Suitable Secondary Servers ......................... 8 7 Serial Number Maintenance .................................. 9 Security Considerations .................................... 11 References ................................................. 11 Acknowledgements ........................................... 11 Authors' Addresses ......................................... 111. Introduction A number of problems in DNS operations today are attributable to poor choices of secondary servers for DNS zones. The geographic placement as well as the diversity of network connectivity exhibited by the set of DNS servers for a zone can increase the reliability of that zone as well as improve overall network performance and access characteristics. Other considerations in server choice can unexpectedly lower reliability or impose extra demands on the network. This document discusses many of the issues that should be considered when selecting secondary servers for a zone. It offers guidance in how to best choose servers to serve a given zone.2. Definitions For the purposes of this document, and only this document, the following definitions apply: DNS The Domain Name System [RFC1034, RFC1035]. Zone A part of the DNS tree, that is treated as a unit. Forward Zone A zone containing data mapping names to host addresses, mail exchange targets, etc.Elz, et al. Best Current Practice [Page 2]RFC 2182 Selection and Operation of Secondary DNS Servers July 1997 Reverse Zone A zone containing data used to map addresses to names. Server An implementation of the DNS protocols able to provide answers to queries. Answers may be from information known by the server, or information obtained from another server. Authoritative Server A server that knows the content of a DNS zone from local knowledge, and thus can answer queries about that zone without needing to query other servers. Listed Server An Authoritative Server for which there is an "NS" resource record (RR) in the zone. Primary Server An authoritative server for which the zone information is locally configured. Sometimes known as a Master server. Secondary Server An authoritative server that obtains information about a zone from a Primary Server via a zone transfer mechanism. Sometimes known as a Slave Server. Stealth Server An authoritative server, usually secondary, which is not a Listed Server. Resolver A client of the DNS which seeks information contained in a zone using the DNS protocols.3. Secondary Servers A major reason for having multiple servers for each zone is to allow information from the zone to be available widely and reliably to clients throughout the Internet, that is, throughout the world, even when one server is unavailable or unreachable. Multiple servers also spread the name resolution load, and improve the overall efficiency of the system by placing servers nearer to the resolvers. Those purposes are not treated further here. With multiple servers, usually one server will be the primary server, and others will be secondary servers. Note that while some unusual configurations use multiple primary servers, that can result in data inconsistencies, and is not advisable.Elz, et al. Best Current Practice [Page 3]RFC 2182 Selection and Operation of Secondary DNS Servers July 1997 The distinction between primary and secondary servers is relevant only to the servers for the zone concerned, to the rest of the DNS there are simply multiple servers. All are treated equally at first instance, even by the parent server that delegates the zone. Resolvers often measure the performance of the various servers, choose the "best", for some definition of best, and prefer that one for most queries. That is automatic, and not considered here. The primary server holds the master copy of the zone file. That is, the server where the data is entered into the DNS from some source outside the DNS. Secondary servers obtain data for the zone using DNS protocol mechanisms to obtain the zone from the primary server.3.1. Selecting Secondary Servers When selecting secondary servers, attention should be given to the various likely failure modes. Servers should be placed so that it is likely that at least one server will be available to all significant parts of the Internet, for any likely failure. Consequently, placing all servers at the local site, while easy to arrange, and easy to manage, is not a good policy. Should a single link fail, or there be a site, or perhaps even building, or room, power failure, such a configuration can lead to all servers being disconnected from the Internet. Secondary servers must be placed at both topologically and geographically dispersed locations on the Internet, to minimise the likelihood of a single failure disabling all of them. That is, secondary servers should be at geographically distant locations, so it is unlikely that events like power loss, etc, will disrupt all of them simultaneously. They should also be connected to the net via quite diverse paths. This means that the failure of any one link, or of routing within some segment of the network (such as a service provider) will not make all of the servers unreachable.3.2. Unsuitable Configurations While it is unfortunately quite common, servers for a zone should certainly not all be placed on the same LAN segment in the same room of the same building - or any of those. Such a configuration almost defeats the requirement, and utility, of having multiple servers. The only redundancy usually provided in that configuration is for the case when one server is down, whereas there are many other possible failure modes, such as power failures, including lengthy ones, to consider.Elz, et al. Best Current Practice [Page 4]RFC 2182 Selection and Operation of Secondary DNS Servers July 19973.3. A Myth Exploded An argument is occasionally made that there is no need for the domain name servers for a domain to be accessible if the hosts in the domain are unreachable. This argument is fallacious. + Clients react differently to inability to resolve than inability to connect, and reactions to the former are not always as desirable. + If the zone is resolvable yet the particular name is not, then a client can discard the transaction rather than retrying and creating undesirable load on the network. + While positive DNS results are usually cached, the lack of a result is not cached. Thus, unnecessary inability to resolve creates an undesirable load on the net. + All names in the zone may not resolve to addresses within the detached network. This becomes more likely over time. Thus a basic assumption of the myth often becomes untrue. It is important that there be nameservers able to be queried, available always, for all forward zones.4. Unreachable servers Another class of problems is caused by listing servers that cannot be reached from large parts of the network. This could be listing the name of a machine that is completely isolated behind a firewall, or just a secondary address on a dual homed machine which is not accessible from outside. The names of servers listed in NS records should resolve to addresses which are reachable from the region to which the NS records are being returned. Including addresses which most of the network cannot reach does not add any reliability, and causes several problems, which may, in the end, lower the reliability of the zone. First, the only way the resolvers can determine that these addresses are, in fact, unreachable, is to try them. They then need to wait on a lack of response timeout (or occasionally an ICMP error response) to know that the address cannot be used. Further, even that is generally indistinguishable from a simple packet loss, so the sequence must be repeated, several times, to give any real evidence of an unreachable server. All of this probing and timeout may take sufficiently long that the original client program or user will decide that no answer is available, leading to an apparent failure of the zone. Additionally, the whole thing needs to be repeated from time to time to distinguish a permanently unreachable server from a temporarily unreachable one.Elz, et al. Best Current Practice [Page 5]RFC 2182 Selection and Operation of Secondary DNS Servers July 1997 And finally, all these steps will potentially need to be done by resolvers all over the network. This will increase the traffic, and probably the load on the filters at whatever firewall is blocking this access. All of this additional load does no more than effectively lower the reliability of the service.4.1. Servers behind intermittent connections A similar problem occurs with DNS servers located in parts of the net that are often disconnected from the Internet as a whole. For example, those which connect via an intermittent connection that is often down. Such servers should usually be treated as if they were behind a firewall, and unreachable to the network at any time.4.2. Other problem cases Similar problems occur when a Network Address Translator (NAT) [RFC1631] exists between a resolver and server. Despite what [RFC1631] suggests, NATs in practice do not translate addresses embedded in packets, only those in the headers. As [RFC1631] suggests, this is somewhat of a problem for the DNS. This can sometimes be overcome if the NAT is accompanied by, or replaced with, an Application Layer Gateway (ALG). Such a device would understand the DNS protocol and translate all the addresses as appropriate as packets pass through. Even with such a device, it is likely to be better in any of these cases to adopt the solution described in the following section.4.3. A Solution To avoid these problems, NS records for a zone returned in any response should list only servers that the resolver requesting the information, is likely to be able to reach. Some resolvers are simultaneously servers performing lookups on behalf of other resolvers. The NS records returned should be reachable not only by the resolver that requested the information, but any other resolver that may be forwarded the information. All the addresses of all the servers returned must be reachable. As the addresses of each server form a Resource Record Set [RFC2181], all must be returned (or none), thus it is not acceptable to elide addresses of servers that are unreachable, or to return them with a low TTL (while returning others with a higher TTL). In particular, when some servers are behind a firewall, intermittent connection, or NAT, which disallows, or has problems with, DNS queries or responses, their names, or addresses, should not be returned to clients outside the firewall. Similarly, servers outside the firewall should not be made known to clients inside it, if theElz, et al. Best Current Practice [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -