📄 rfc2103.txt
字号:
4 Approaches As discussed in section 2, the problem of mobility in the context of Nimrod may be viewed as one of maintaining a dynamic association (DAM) and communicating this association and changes therein to Nimrod. Approaches to mobility may be classified based on how different aspects of the DAM are addressed.Ramanathan Informational [Page 6]RFC 2103 Nimrod Mobility Support February 1997 Our classification identifies two aspects to the mobility solution : 1. How and where to maintain the dynamic association between endpoints and locators? This may be perceived as a problem of database maintenance. The database may be maintained in a centralized fashion, wherein a single entity maintains the association and updates are sent to it by the mobile host or in a distributed fashion, wherein there are a number of entities that store the associations. A (distributed) database that stores the endpoint-locator mapping is required by Nimrod even in the absence of mobility. If this service can accommodate dynamic update and retrieval requests at the rate produced by mobility, this service is a candidate for a solution. However, we note that the availability of such a system should not be a requirement for the mobility solution. 2. Where to do the remapping between the endpoint and locator, in case of a change in association? By remapping, we mean associate a new locator with the endpoint. Some candidates are : the source, the "home" location of the host that has moved and any router (say, between the source and the destination) in the network. Many of the existing approaches and perhaps some new approaches to the problem of mobile internetworking may be seen to be instantiations of a combination of a dynamic association method and a remapping method. We (Re-mapping location) | v ----------------------------------------- | |Source | Home | Routers | ----------------------------------------- (Assoc. |Centralized | A1 | X | X | maint)-> ---------------------------------------- |Distributed | X | A2 | A3 | ----------------------------------------Table 1 : Classification of approaches based on how the association is maintained and where the remapping is done.Ramanathan Informational [Page 7]RFC 2103 Nimrod Mobility Support February 1997 consider some combinations as illustrated in Table 1. We discuss three combinations (marked A1 - A3 in the table) and examine their advantages and disadvantages in the context of our requirements. The other combinations (marked X in the table) are possible, but do not represent a substantially different class of solutions from the ones discussed and hence are not considered here. Note that this is but one classsification of mobility schemes and that the remapping and endpoint-locator maintenance strategies mentioned in the table are not exhaustive. The main intention is to help understand better the kinds of approaches that would be most suitable for Nimrod. In the following, we use the term source to refer to the endpoint that is attempting to communicate with or sending packets to a mobile endpoint. The source could be static or mobile. We use the term mobile destination to refer to the endpoint that is the intended destination of the source's packets.A1. In this approach, all endpoint-locator mappings are maintained at a centralized location. The source queries the database to get the locator of the mobile destination. Alternatively, the database can send updates to the source when the mobile destination moves. The main advantage of this scheme is its simplicity. Also, no modification to routers is required, and the route from the source to a mobile destination is direct. The main disadvantage of this scheme is vulnerability - if the centralized location goes down, all information is lost. While this scheme may be sufficient for small networks with low mobility, it does not scale adequately to be a long term solution for Nimrod.A2. This approach uses distributed association maintenance with remapping done at the home. This is the approach that is being used by the Mobile-IP working group of the IETF for the draft proposal and by the Cellular Digital Packet Data (CDPD) consortium. In this approach, every mobile endpoint is associated with a "home" and a "home representative" keeps track of the location of every mobile endpoint associated with it. A protocol between a mobile endpoint and the home representative is used to keep the information up-to-date. The source sends the packet using the home locator of the mobile destination, and the home representative forwards the packet to the mobile destination. The advantage of this scheme is that it is fairly simple and does not involve either the source or the routers in the network. Furthermore, the mobile destination can keep its location secret (known only to the home representative) - this is likely to be aRamanathan Informational [Page 8]RFC 2103 Nimrod Mobility Support February 1997 desirable feature for mobile hosts in some applications. Finally, most of the control information is confined to the node containing the home representative and the mobile host and this is a plus for scalability. The main disadvantage is a problem often referred to as triangular routing. That is, the packets have to go from the source to the home representative first before going to the mobile destination. This is especially inefficient if, for instance, both the source and mobile destination are in, say, England and the home representative is in, say, Australia. Also, there is still some vulnerability, since if the home representative becomes unreachable, the location of all of the mobile hosts it tracks is lost and communication from most sources to the mobile host is cut-off. It is also not clear how well this scheme will scale to mobile internetworks of the future. Nevertheless, we feel that this approach or a modification thereof might be a viable first-cut mobility solution for Nimrod.A3. In each of the previous cases, the routers in the network were not involved in tracking the location of the mobile host. In this approach, state is maintained in the routers. An example is the approach proposed in [TYT91] wherein the packets sent by a mobile host are snooped and state is created. The packets contain the mobile host's home location and its new location. This mapping is maintained at some routers in the network. When a packet intended for the mobile host addressed to its home location enters such a router, a translation is made and the packet is redirected to the new location. An alternate mechanism is to maintain the mapping in all of the border routers (e.g., forwarding agents) in the node within which the movement took place. A packet from outside the node intended for a destination within the node would typically enter the node through one of the border routers. Using the mapping, the border router could figure out the most recent locator of the mobile destination and send the packet directly to that locator. If most of the movements are within low level nodes, this would scale to large numbers of movements. Furthermore, the packet takes an optimal path (or as optimal as one can get with a hierarchical network) to the new location within the time it takes for the node representative to get the new information, which is typically quite small for low-level nodes.Ramanathan Informational [Page 9]RFC 2103 Nimrod Mobility Support February 1997 The main disadvantage of this scheme is that routers have to be involved. However, future requirements in regard to scalability and response time might necessitate such an approach. Furthermore, this solution has closer ties with Nimrod routing and is better suited to handling scenarios 3 and 4 where the topology changes as a result of mobility. All of these approaches seem potentially capable of handling scenarios 1 and 2 of the previous section. Scenarios 3 and 4 are best handled by an approach similar to A3. However, approaches like A3 are more complex and involve more Nimrod entities (e.g., routers) than may be desirable. We have tried to bring out the various issues governing mobility in Nimrod. In the final analysis, the tradeoffs between the various options will have to be examined vis-a-vis our particular requirements (for instance, the need to support network mobility) in adopting a solution. It is likely that general requirements such as scalability and security will also influence the direction of the approach to mobility in Nimrod.5 A Solution using IETF Mobile-IP The Mobile-IP Working Group of the IETF is in the process of standardizing a protocol that allows an IPv4 capable network to support mobile hosts. In this section, we outline how mobility can be implemented within Nimrod using the same mechanism and indeed, the same protocol headers defined in [Sim94]. Not all functionality described in [Sim94] are covered - only those that form the "core" of mobility support. In order to follow this section, the reader is required to have some familiarity with the IETF Mobile-IP protocol (see [Sim94]).5.1 Overview The general scheme employed by the IETF Mobile-IP protocol is as follows. A Mobile Host (MH) has a predefined Home Agent (HA) that is responsible for the MH's whereabouts. Typically, the MH spends most of its time in the network containing the HA. Let us assume that the MH wanders to a new network. The MH then contacts a Foreign Agent (FA) at the new network that will act on its behalf and sends a registration request to the HA via the FA. This serves the purpose of informing the HA of the MH's new whereabouts and also is a means of verification of the MH's authenticity. It also contains the address of the FA as the new Care-of-Address. A correspondent host (CH) wishing to send a message to the MH uses the MH's Home IP address. This message is captured by the HA and tunnelled using encapsulationRamanathan Informational [Page 10]RFC 2103 Nimrod Mobility Support February 1997 to the FA whereupon the FA decapsulates and sends the original message to the MH. If the MH can get itself a new transient address then there is no need for a Foreign Agent. The transient address will be sent as the Care-of-Address. The packets will be tunnelled directly to this address by the Home Agent. Note, however, that some networks may require that a mobile host go through a Foreign Agent. A fundamental difference between IP and Nimrod is that in the latter an endpoint has both a (topologically sensitive) locator and a (topologically insensitive) endpoint-id (EID). In IP, the IP address serves as both the EID and the locator. Thus, it should be possible to use the Mobile-IP protocol for providing mobility support in Nimrod by simply using the EID of the MH wherever its Home IP Address was being used and by appropriately using the EID and locator of the FA and HA in place of their IP addresses (An issue is the format and length compatibility between EIDs and IP addresses. For the discussion here, we assume that an EID can fit into an IP (v4 or v6) address given in Figure 1). We give below the details of the protocol fields and the actions taken by the MH, FA and HA to show that this is possible and that it is quite simple.5.2 Protocol Details There are two kinds of protocol headers relevant to our discussion - the Mobile-IP Protocol (MIPP headers) and the headers for data packets transported by Nimrod (NP headers). It is our intent that Nimrod use, as much as possible, the next generation IP (IPv6) header. The NP header contains as a subset fields that would eventually be present in the IPv6 header. In the scheme given below, the MIPP header is enclosed within the NP packet (i.e., MIPP operates over NP). The details of the fields constituting the NP header are beyond the scope of this document. However, without venturing into bit lengths, etc., we identify below a few fields that are relevant to our discussion: o Source EID (S-EID) : The endpoint ID of the source entity originating the packet. o Destination EID (D-EID) : The endpoint ID of the destination. o Source locator (S-LOC) : Locator of the entity originating the packet. o Destination locator (D-LOC) : Locator of the destination.Ramanathan Informational [Page 11]RFC 2103 Nimrod Mobility Support February 1997 The MIPP header fields are described in [Sim94]. In what follows, we describe the values that must be assigned to the relevant NP and MIPP fields in order for Nimrod to work with Mobile- IP. There are three phases we must consider : agent discovery, registration and forwarding [Sim94]. A pictorial summary of the control and data packets is given in Figure 1. Agent Discovery: In this phase, the MH discovers the foreign agent, if any, that will act on its behalf. In MIPP, this is done using the ICMP Router Discovery messages. When an MH attaches to a Nimrod network (node), foreign agent discovery is done as follows. We assume that a link-level connection is established between the MH and a node N belonging to the network. For instance, this node could be a wireless equipped base station
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -