📄 rfc1030.txt
字号:
Network Working Group M. LambertRequest for Comments: 1030 M.I.T. Laboratory for Computer Science November 1987 On Testing the NETBLT Protocol over Divers NetworksSTATUS OF THIS MEMO This RFC describes the results gathered from testing NETBLT over three networks of differing bandwidths and round-trip delays. While the results are not complete, the information gathered so far has been very promising and supports RFC-998's assertion that that NETBLT can provide very high throughput over networks with very different characteristics. Distribution of this memo is unlimited.1. Introduction NETBLT (NETwork BLock Transfer) is a transport level protocol intended for the rapid transfer of a large quantity of data between computers. It provides a transfer that is reliable and flow controlled, and is designed to provide maximum throughput over a wide variety of networks. The NETBLT protocol is specified in RFC-998; this document assumes an understanding of the specification as described in RFC-998. Tests over three different networks are described in this document. The first network, a 10 megabit-per-second Proteon Token Ring, served as a "reference environment" to determine NETBLT's best possible performance. The second network, a 10 megabit-per-second Ethernet, served as an access path to the third network, the 3 megabit-per- second Wideband satellite network. Determining NETBLT's performance over the Ethernet allowed us to account for Ethernet-caused behaviour in NETBLT transfers that used the Wideband network. Test results for each network are described in separate sections. The final section presents some conclusions and further directions of research. The document's appendices list test results in detail.2. Acknowledgements Many thanks are due Bob Braden, Stephen Casner, and Annette DeSchon of ISI for the time they spent analyzing and commenting on test results gathered at the ISI end of the NETBLT Wideband network tests. Bob Braden was also responsible for porting the IBM PC/AT NETBLT implementation to a SUN-3 workstation running UNIX. Thanks are also due Mike Brescia, Steven Storch, Claudio Topolcic and others at BBN who provided much useful information about the Wideband network, andM. Lambert [Page 1]RFC 1030 Testing the NETBLT Protocol November 1987 helped monitor it during testing.3. Implementations and Test Programs This section briefly describes the NETBLT implementations and test programs used in the testing. Currently, NETBLT runs on three machine types: Symbolics LISP machines, IBM PC/ATs, and SUN-3s. The test results described in this paper were gathered using the IBM PC/AT and SUN-3 NETBLT implementations. The IBM and SUN implementations are very similar; most differences lie in timer and multi-tasking library implementations. The SUN NETBLT implementation uses UNIX's user-accessible raw IP socket; it is not implemented in the UNIX kernel. The test application performs a simple memory-to-memory transfer of an arbitrary amount of data. All data are actually allocated by the application, given to the protocol layer, and copied into NETBLT packets. The results are therefore fairly realistic and, with appropriately large amounts of buffering, could be attained by disk- based applications as well. The test application provides several parameters that can be varied to alter NETBLT's performance characteristics. The most important of these parameters are: burst interval The number of milliseconds from the start of one burst transmission to the start of the next burst transmission. burst size The number of packets transmitted per burst. buffer size The number of bytes in a NETBLT buffer (all buffers must be the same size, save the last, which can be any size required to complete the transfer). data packet size The number of bytes contained in a NETBLT DATA packet's data segment. number of outstanding buffers The number of buffers which can be in transmission/error recovery at any given moment.M. Lambert [Page 2]RFC 1030 Testing the NETBLT Protocol November 1987 The protocol's throughput is measured in two ways. First, the "real throughput" is throughput as viewed by the user: the number of bits transferred divided by the time from program start to program finish. Although this is a useful measurement from the user's point of view, another throughput measurement is more useful for analyzing NETBLT's performance. The "steady-state throughput" is the rate at which data is transmitted as the transfer size approaches infinity. It does not take into account connection setup time, and (more importantly), does not take into account the time spent recovering from packet-loss errors that occur after the last buffer in the transmission is sent out. For NETBLT transfers using networks with long round-trip delays (and consequently with large numbers of outstanding buffers), this "late" recovery phase can add large amounts of time to the transmission, time which does not reflect NETBLT's peak transmission rate. The throughputs listed in the test cases that follow are all steady-state throughputs.4. Implementation Performance This section describes the theoretical performance of the IBM PC/AT NETBLT implementation on both the transmitting and receiving sides. Theoretical performance was measured on two LANs: a 10 megabit-per- second Proteon Token Ring and a 10 megabit-per-second Ethernet. "Theoretical performance" is defined to be the performance achieved if the sending NETBLT did nothing but transmit data packets, and the receiving NETBLT did nothing but receive data packets. Measuring the send-side's theoretical performance is fairly easy, since the sending NETBLT does very little more than transmit packets at a predetermined rate. There are few, if any, factors which can influence the processing speed one way or another. Using a Proteon P1300 interface on a Proteon Token Ring, the IBM PC/AT NETBLT implementation can copy a maximum-sized packet (1990 bytes excluding protocol headers) from NETBLT buffer to NETBLT data packet, format the packet header, and transmit the packet onto the network in about 8 milliseconds. This translates to a maximum theoretical throughput of 1.99 megabits per second. Using a 3COM 3C500 interface on an Ethernet LAN, the same implementation can transmit a maximum-sized packet (1438 bytes excluding protocol headers) in 6.0 milliseconds, for a maximum theoretical throughput of 1.92 megabits per second. Measuring the receive-side's theoretical performance is more difficult. Since all timer management and message ACK overhead is incurred at the receiving NETBLT's end, the processing speed can be slightly slower than the sending NETBLT's processing speed (this doesM. Lambert [Page 3]RFC 1030 Testing the NETBLT Protocol November 1987 not even take into account the demultiplexing overhead that the receiver incurs while matching packets with protocol handling functions and connections). In fact, the amount by which the two processing speeds differ is dependent on several factors, the most important of which are: length of the NETBLT buffer list, the number of data timers which may need to be set, and the number of control messages which are ACKed by the data packet. Almost all of this added overhead is directly related to the number of outstanding buffers allowable during the transfer. The fewer the number of outstanding buffers, the shorter the NETBLT buffer list, and the faster a scan through the buffer list and the shorter the list of unacknowledged control messages. Assuming a single-outstanding-buffer transfer, the receiving-side NETBLT can DMA a maximum-sized data packet from the Proteon Token Ring into its network interface, copy it from the interface into a packet buffer and finally copy the packet into the correct NETBLT buffer in 8 milliseconds: the same speed as the sender of data. Under the same conditions, the implementation can receive a maximum- sized packet from the Ethernet in 6.1 milliseconds, for a maximum theoretical throughput of 1.89 megabits per second.5. Testing on a Proteon Token Ring The Proteon Token Ring used for testing is a 10 megabit-per-second LAN supporting about 40 hosts. The machines on either end of the transfer were IBM PC/ATs using Proteon P1300 network interfaces. The Token Ring provides high bandwidth with low round-trip delay and negligible packet loss, a good debugging environment in situations where packet loss, packet reordering, and long round-trip time would hinder debugging. Also contributing to high performance is the large (maximum 2046 bytes) network MTU. The larger packets take somewhat longer to transmit than do smaller packets (8 milliseconds per 2046 byte packet versus 6 milliseconds per 1500 byte packet), but the lessened per-byte computational overhead increases throughput somewhat. The fastest single-outstanding-buffer transmission rate was 1.49 megabits per second, and was achieved using a test case with the following parameters:M. Lambert [Page 4]RFC 1030 Testing the NETBLT Protocol November 1987 transfer size 2-5 million bytes data packet size 1990 bytes buffer size 19900 bytes burst size 5 packets burst interval 40 milliseconds. The timer code on the IBM PC/AT is accurate to within 1 millisecond, so a 40 millisecond burst can be timed very accurately. Allowing only one outstanding buffer reduced the protocol to running "lock-step" (the receiver of data sends a GO, the sender sends data, the receiver sends an OK, followed by a GO for the next buffer). Since the lock-step test incurred one round-trip-delay's worth of overhead per buffer (between transmission of a buffer's last data packet and receipt of an OK for that buffer/GO for the next buffer), a test with two outstanding buffers (providing essentially constant packet transmission) should have resulted in higher throughput. A second test, this time with two outstanding buffers, was performed, with the above parameters identical save for an increased burst interval of 43 milliseconds. The highest throughput recorded was 1.75 megabits per second. This represents 95% efficiency (5 1990- byte packets every 43 milliseconds gives a maximum theoretical throughput of 1.85 megabits per second). The increase in throughput over a single-outstanding-buffer transmission occurs because, with two outstanding buffers, there is no round-trip-delay lag between buffer transmissions and the sending NETBLT can transmit constantly. Because the P1300 interface can transmit and receive concurrently, no packets were dropped due to collision on the interface. As mentioned previously, the minimum transmission time for a maximum-sized packet on the Proteon Ring is 8 milliseconds. One would expect, therefore, that the maximum throughput for a double- buffered transmission would occur with a burst interval of 8 milliseconds times 5 packets per burst, or 40 milliseconds. This would allow the sender of data to transmit bursts with no "dead time" in between bursts. Unfortunately, the sender of data must take time to process incoming control messages, which typically forces a 2-3 millisecond gap between bursts, lowering the throughput. With a burst interval of 43 milliseconds, the incoming packets are processedM. Lambert [Page 5]RFC 1030 Testing the NETBLT Protocol November 1987 during the 3 millisecond-per-burst "dead time", making the protocol more efficient.6. Testing on an Ethernet The network used in performing this series of tests was a 10 megabit per second Ethernet supporting about 150 hosts. The machines at either end of the NETBLT connection were IBM PC/ATs using 3COM 3C500 network interfaces. As with the Proteon Token Ring, the Ethernet provides high bandwidth with low delay. Unfortunately, the particular Ethernet used for testing (MIT's infamous Subnet 26) is known for being somewhat noisy. In addition, the 3COM 3C500 Ethernet interfaces are relatively unsophisticated, with only a single hardware packet buffer for both transmitting and receiving packets. This gives the interface an annoying tendency to drop packets under heavy load. The combination of these factors made protocol performance analysis somewhat more difficult than on the Proteon Ring.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -