📄 rfc2544.txt
字号:
Network Working Group S. BradnerRequest for Comments: 2544 Harvard UniversityObsoletes: 1944 J. McQuaidCategory: Informational NetScout Systems March 1999 Benchmarking Methodology for Network Interconnect DevicesStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.IESG Note This document is a republication of RFC 1944 correcting the values for the IP addresses which were assigned to be used as the default addresses for networking test equipment. (See section C.2.2 ). This RFC replaces and obsoletes RFC 1944.Abstract This document discusses and defines a number of tests that may be used to describe the performance characteristics of a network interconnecting device. In addition to defining the tests this document also describes specific formats for reporting the results of the tests. Appendix A lists the tests and conditions that we believe should be included for specific cases and gives additional information about testing practices. Appendix B is a reference listing of maximum frame rates to be used with specific frame sizes on various media and Appendix C gives some examples of frame formats to be used in testing.1. Introduction Vendors often engage in "specsmanship" in an attempt to give their products a better position in the marketplace. This often involves "smoke & mirrors" to confuse the potential users of the products.Bradner & McQuaid Informational [Page 1]RFC 2544 Benchmarking Methodology March 1999 This document defines a specific set of tests that vendors can use to measure and report the performance characteristics of network devices. The results of these tests will provide the user comparable data from different vendors with which to evaluate these devices. A previous document, "Benchmarking Terminology for Network Interconnect Devices" (RFC 1242), defined many of the terms that are used in this document. The terminology document should be consulted before attempting to make use of this document.2. Real world In producing this document the authors attempted to keep in mind the requirement that apparatus to perform the described tests must actually be built. We do not know of "off the shelf" equipment available to implement all of the tests but it is our opinion that such equipment can be constructed.3. Tests to be run There are a number of tests described in this document. Not all of the tests apply to all types of devices under test (DUTs). Vendors should perform all of the tests that can be supported by a specific type of product. The authors understand that it will take a considerable period of time to perform all of the recommended tests nder all of the recommended conditions. We believe that the results are worth the effort. Appendix A lists some of the tests and conditions that we believe should be included for specific cases.4. Evaluating the results Performing all of the recommended tests will result in a great deal of data. Much of this data will not apply to the evaluation of the devices under each circumstance. For example, the rate at which a router forwards IPX frames will be of little use in selecting a router for an environment that does not (and will not) support that protocol. Evaluating even that data which is relevant to a particular network installation will require experience which may not be readily available. Furthermore, selection of the tests to be run and evaluation of the test data must be done with an understanding of generally accepted testing practices regarding repeatability, variance and statistical significance of small numbers of trials.Bradner & McQuaid Informational [Page 2]RFC 2544 Benchmarking Methodology March 19995. Requirements In this document, the words that are used to define the significance of each particular requirement are capitalized. These words are: * "MUST" This word, or the words "REQUIRED" and "SHALL" mean that the item is an absolute requirement of the specification. * "SHOULD" This word or the adjective "RECOMMENDED" means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course. * "MAY" This word or the adjective "OPTIONAL" means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item. An implementation is not compliant if it fails to satisfy one or more of the MUST requirements for the protocols it implements. An implementation that satisfies all the MUST and all the SHOULD requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the MUST requirements but not all the SHOULD requirements for its protocols is said to be "conditionally compliant".6. Test set up The ideal way to implement this series of tests is to use a tester with both transmitting and receiving ports. Connections are made from the sending ports of the tester to the receiving ports of the DUT and from the sending ports of the DUT back to the tester. (see Figure 1) Since the tester both sends the test traffic and receives it back, after the traffic has been forwarded but the DUT, the tester can easily determine if all of the transmitted packets were received and verify that the correct packets were received. The same functionality can be obtained with separate transmitting and receiving devices (see Figure 2) but unless they are remotely controlled by some computer in a way that simulates the single tester, the labor required to accurately perform some of the tests (particularly the throughput test) can be prohibitive.Bradner & McQuaid Informational [Page 3]RFC 2544 Benchmarking Methodology March 1999 +------------+ | | +------------| tester |<-------------+ | | | | | +------------+ | | | | +------------+ | | | | | +----------->| DUT |--------------+ | | +------------+ Figure 1 +--------+ +------------+ +----------+ | | | | | | | sender |-------->| DUT |--------->| receiver | | | | | | | +--------+ +------------+ +----------+ Figure 26.1 Test set up for multiple media types Two different setups could be used to test a DUT which is used in real-world networks to connect networks of differing media type, local Ethernet to a backbone FDDI ring for example. The tester could support both media types in which case the set up shown in Figure 1 would be used. Two identical DUTs are used in the other test set up. (see Figure 3) In many cases this set up may more accurately simulate the real world. For example, connecting two LANs together with a WAN link or high speed backbone. This set up would not be as good at simulating a system where clients on a Ethernet LAN were interacting with a server on an FDDI backbone. +-----------+ | | +---------------------| tester |<---------------------+ | | | | | +-----------+ | | | | +----------+ +----------+ | | | | | | | +------->| DUT 1 |-------------->| DUT 2 |---------+ | | | | +----------+ +----------+ Figure 3Bradner & McQuaid Informational [Page 4]RFC 2544 Benchmarking Methodology March 19997. DUT set up Before starting to perform the tests, the DUT to be tested MUST be configured following the instructions provided to the user. Specifically, it is expected that all of the supported protocols will be configured and enabled during this set up (See Appendix A). It is expected that all of the tests will be run without changing the configuration or setup of the DUT in any way other than that required to do the specific test. For example, it is not acceptable to change the size of frame handling buffers between tests of frame handling rates or to disable all but one transport protocol when testing the throughput of that protocol. It is necessary to modify the configuration when starting a test to determine the effect of filters on throughput, but the only change MUST be to enable the specific filter. The DUT set up SHOULD include the normally recommended routing update intervals and keep alive frequency. The specific version of the software and the exact DUT configuration, including what functions are disabled, used during the tests MUST be included as part of the report of the results.8. Frame formats The formats of the test frames to use for TCP/IP over Ethernet are shown in Appendix C: Test Frame Formats. These exact frame formats SHOULD be used in the tests described in this document for this protocol/media combination and that these frames will be used as a template for testing other protocol/media combinations. The specific formats that are used to define the test frames for a particular test series MUST be included in the report of the results.9. Frame sizes All of the described tests SHOULD be performed at a number of frame sizes. Specifically, the sizes SHOULD include the maximum and minimum legitimate sizes for the protocol under test on the media under test and enough sizes in between to be able to get a full characterization of the DUT performance. Except where noted, at least five frame sizes SHOULD be tested for each test condition. Theoretically the minimum size UDP Echo request frame would consist of an IP header (minimum length 20 octets), a UDP header (8 octets) and whatever MAC level header is required by the media in use. The theoretical maximum frame size is determined by the size of the length field in the IP header. In almost all cases the actual maximum and minimum sizes are determined by the limitations of the media.Bradner & McQuaid Informational [Page 5]RFC 2544 Benchmarking Methodology March 1999 In theory it would be ideal to distribute the frame sizes in a way that would evenly distribute the theoretical frame rates. These recommendations incorporate this theory but specify frame sizes which are easy to understand and remember. In addition, many of the same frame sizes are specified on each of the media types to allow for easy performance comparisons. Note: The inclusion of an unrealistically small frame size on some of the media types (i.e. with little or no space for data) is to help characterize the per-frame processing overhead of the DUT.9.1 Frame sizes to be used on Ethernet 64, 128, 256, 512, 1024, 1280, 1518 These sizes include the maximum and minimum frame sizes permitted by the Ethernet standard and a selection of sizes between these extremes with a finer granularity for the smaller frame sizes and higher frame rates.9.2 Frame sizes to be used on 4Mb and 16Mb token ring 54, 64, 128, 256, 1024, 1518, 2048, 4472 The frame size recommendations for token ring assume that there is no RIF field in the frames of routed protocols. A RIF field would be present in any direct source route bridge performance test. The minimum size frame for UDP on token ring is 54 octets. The maximum size of 4472 octets is recommended for 16Mb token ring instead of the theoretical size of 17.9Kb because of the size limitations imposed by many token ring interfaces. The reminder of the sizes are selected to permit direct comparisons with other types of media. An IP (i.e. not UDP) frame may be used in addition if a higher data rate is desired, in which case the minimum frame size is 46 octets.9.3 Frame sizes to be used on FDDI 54, 64, 128, 256, 1024, 1518, 2048, 4472 The minimum size frame for UDP on FDDI is 53 octets, the minimum size of 54 is recommended to allow direct comparison to token ring performance. The maximum size of 4472 is recommended instead of the theoretical maximum size of 4500 octets to permit the same type of comparison. An IP (i.e. not UDP) frame may be used in addition if a higher data rate is desired, in which case the minimum frame size is 45 octets.Bradner & McQuaid Informational [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -