📄 rfc2078.txt
字号:
Linn Standards Track [Page 15]RFC 2078 GSS-API January 1997Table 1: GSS-API Major Status Codes FATAL ERROR CODES GSS_S_BAD_BINDINGS channel binding mismatch GSS_S_BAD_MECH unsupported mechanism requested GSS_S_BAD_NAME invalid name provided GSS_S_BAD_NAMETYPE name of unsupported type provided GSS_S_BAD_STATUS invalid input status selector GSS_S_BAD_SIG token had invalid integrity check GSS_S_CONTEXT_EXPIRED specified security context expired GSS_S_CREDENTIALS_EXPIRED expired credentials detected GSS_S_DEFECTIVE_CREDENTIAL defective credential detected GSS_S_DEFECTIVE_TOKEN defective token detected GSS_S_FAILURE failure, unspecified at GSS-API level GSS_S_NO_CONTEXT no valid security context specified GSS_S_NO_CRED no valid credentials provided GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements INFORMATORY STATUS CODES GSS_S_COMPLETE normal completion GSS_S_CONTINUE_NEEDED continuation call to routine required GSS_S_DUPLICATE_TOKEN duplicate per-message token detected GSS_S_OLD_TOKEN timed-out per-message token detected GSS_S_UNSEQ_TOKEN reordered (early) per-message token detected GSS_S_GAP_TOKEN skipped predecessor token(s) detected Minor_status provides more detailed status information which may include status codes specific to the underlying security mechanism. Minor_status values are not specified in this document. GSS_S_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms' employment of different numbers of messages within their authentication sequences need not be reflected in separate code paths within calling applications. Instead, such cases are accommodatedLinn Standards Track [Page 16]RFC 2078 GSS-API January 1997 with sequences of continuation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same mechanism is used to encapsulate mutual authentication within the GSS-API's context initiation calls. For mech_types which require interactions with third-party servers in order to establish a security context, GSS-API context establishment calls may block pending completion of such third-party interactions. On the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote peers, and reflection of such status information is a caller responsibility outside the GSS-API.1.2.2: Per-Message Security Service Availability When a context is established, two flags are returned to indicate the set of per-message protection security services which will be available on the context: the integ_avail flag indicates whether per-message integrity and data origin authentication services are available the conf_avail flag indicates whether per-message confidentiality services are available, and will never be returned TRUE unless the integ_avail flag is also returned TRUE GSS-API callers desiring per-message security services should check the values of these flags at context establishment time, and must be aware that a returned FALSE value for integ_avail means that invocation of GSS_GetMIC() or GSS_Wrap() primitives on the associated context will apply no cryptographic protection to user data messages. The GSS-API per-message integrity and data origin authentication services provide assurance to a receiving caller that protection was applied to a message by the caller's peer on the security context, corresponding to the entity named at context initiation. The GSS-API per-message confidentiality service provides assurance to a sending caller that the message's content is protected from access by entities other than the context's named peer.Linn Standards Track [Page 17]RFC 2078 GSS-API January 1997 The GSS-API per-message protection service primitives, as the category name implies, are oriented to operation at the granularity of protocol data units. They perform cryptographic operations on the data units, transfer cryptographic control information in tokens, and, in the case of GSS_Wrap(), encapsulate the protected data unit. As such, these primitives are not oriented to efficient data protection for stream-paradigm protocols (e.g., Telnet) if cryptography must be applied on an octet-by-octet basis.1.2.3: Per-Message Replay Detection and Sequencing Certain underlying mech_types offer support for replay detection and/or sequencing of messages transferred on the contexts they support. These optionally-selectable protection features are distinct from replay detection and sequencing features applied to the context establishment operation itself; the presence or absence of context- level replay or sequencing features is wholly a function of the underlying mech_type's capabilities, and is not selected or omitted as a caller option. The caller initiating a context provides flags (replay_det_req_flag and sequence_req_flag) to specify whether the use of per-message replay detection and sequencing features is desired on the context being established. The GSS-API implementation at the initiator system can determine whether these features are supported (and whether they are optionally selectable) as a function of mech_type, without need for bilateral negotiation with the target. When enabled, these features provide recipients with indicators as a result of GSS-API processing of incoming messages, identifying whether those messages were detected as duplicates or out-of-sequence. Detection of such events does not prevent a suspect message from being provided to a recipient; the appropriate course of action on a suspect message is a matter of caller policy. The semantics of the replay detection and sequencing services applied to received messages, as visible across the interface which the GSS- API provides to its clients, are as follows: When replay_det_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows: 1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, and that the message was not a replay of a previously-processed message within that window.Linn Standards Track [Page 18]RFC 2078 GSS-API January 1997 2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message. 3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that the message is too old to be checked for duplication. When sequence_state is TRUE, the possible major_status returns for well-formed and correctly signed messages are as follows: 1. GSS_S_COMPLETE indicates that the message was within the window (of time or sequence space) allowing replay events to be detected, that the message was not a replay of a previously-processed message within that window, and that no predecessor sequenced messages are missing relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue. 2. GSS_S_DUPLICATE_TOKEN indicates that the integrity check value on the received message was correct, but that the message was recognized as a duplicate of a previously-processed message. 3. GSS_S_OLD_TOKEN indicates that the integrity check value on the received message was correct, but that the token is too old to be checked for duplication. 4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that it is earlier in a sequenced stream than a message already processed on the context. [Note: Mechanisms can be architected to provide a stricter form of sequencing service, delivering particular messages to recipients only after all predecessor messages in an ordered stream have been delivered. This type of support is incompatible with the GSS-API paradigm in which recipients receive all messages, whether in order or not, and provide them (one at a time, without intra-GSS- API message buffering) to GSS-API routines for validation. GSS- API facilities provide supportive functions, aiding clients to achieve strict message stream integrity in an efficient manner in conjunction with sequencing provisions in communications protocols, but the GSS-API does not offer this level of message stream integrity service by itself.]Linn Standards Track [Page 19]RFC 2078 GSS-API January 1997 5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on the received message was correct, but that one or more predecessor sequenced messages have not been successfully processed relative to the last received message (if any) processed on the context with a correct cryptographic checkvalue. As the message stream integrity features (especially sequencing) may interfere with certain applications' intended communications paradigms, and since support for such features is likely to be resource intensive, it is highly recommended that mech_types supporting these features allow them to be activated selectively on initiator request when a context is established. A context initiator and target are provided with corresponding indicators (replay_det_state and sequence_state), signifying whether these features are active on a given context. An example mech_type supporting per-message replay detection could (when replay_det_state is TRUE) implement the feature as follows: The underlying mechanism would insert timestamps in data elements output by GSS_GetMIC() and GSS_Wrap(), and would maintain (within a time- limited window) a cache (qualified by originator-recipient pair) identifying received data elements processed by GSS_VerifyMIC() and GSS_Unwrap(). When this feature is active, exception status returns (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when GSS_VerifyMIC() or GSS_Unwrap() is presented with a message which is either a detected duplicate of a prior message or which is too old to validate against a cache of recently received messages.1.2.4: Quality of Protection Some mech_types provide their users with fine granularity control over the means used to provide per-message protection, allowing callers to trade off security processing overhead dynamically against the protection requirements of particular messages. A per-message quality-of-protection parameter (analogous to quality-of-service, or QOS) selects among different QOP options supported by that mechanism. On context establishment for a multi-QOP mech_type, context-level data provides the prerequisite data for a range of protection
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -