📄 rfc2078.txt
字号:
The GSS-API is independent of underlying protocols and addressing structure, and depends on its callers to transport GSS-API-provided data elements. As a result of these factors, it is a callerLinn Standards Track [Page 10]RFC 2078 GSS-API January 1997 responsibility to parse communicated messages, separating GSS-API- related data elements from caller-provided data. The GSS-API is independent of connection vs. connectionless orientation of the underlying communications service. No correlation between security context and communications protocol association is dictated. (The optional channel binding facility, discussed in Section 1.1.6 of this document, represents an intentional exception to this rule, supporting additional protection features within GSS-API supporting mechanisms.) This separation allows the GSS-API to be used in a wide range of communications environments, and also simplifies the calling sequences of the individual calls. In many cases (depending on underlying security protocol, associated mechanism, and availability of cached information), the state information required for context setup can be sent concurrently with initial signed user data, without interposing additional message exchanges.1.1.4: Mechanism Types In order to successfully establish a security context with a target peer, it is necessary to identify an appropriate underlying mechanism type (mech_type) which both initiator and target peers support. The definition of a mechanism embodies not only the use of a particular cryptographic technology (or a hybrid or choice among alternative cryptographic technologies), but also definition of the syntax and semantics of data element exchanges which that mechanism will employ in order to support security services. It is recommended that callers initiating contexts specify the "default" mech_type value, allowing system-specific functions within or invoked by the GSS-API implementation to select the appropriate mech_type, but callers may direct that a particular mech_type be employed when necessary. The means for identifying a shared mech_type to establish a security context with a peer will vary in different environments and circumstances; examples include (but are not limited to): use of a fixed mech_type, defined by configuration, within an environment syntactic convention on a target-specific basis, through examination of a target's name lookup of a target's name in a naming service or other database in order to identify mech_types supported by that targetLinn Standards Track [Page 11]RFC 2078 GSS-API January 1997 explicit negotiation between GSS-API callers in advance of security context setup When transferred between GSS-API peers, mech_type specifiers (per Section 3, represented as Object Identifiers (OIDs)) serve to qualify the interpretation of associated tokens. (The structure and encoding of Object Identifiers is defined in ISO/IEC 8824, "Specification of Abstract Syntax Notation One (ASN.1)" and in ISO/IEC 8825, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)".) Use of hierarchically structured OIDs serves to preclude ambiguous interpretation of mech_type specifiers. The OID representing the DASS MechType, for example, is 1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism, once advanced to the level of Proposed Standard, will be 1.2.840.113554.1.2.2.1.1.5: Naming The GSS-API avoids prescribing naming structures, treating the names which are transferred across the interface in order to initiate and accept security contexts as opaque objects. This approach supports the GSS-API's goal of implementability atop a range of underlying security mechanisms, recognizing the fact that different mechanisms process and authenticate names which are presented in different forms. Generalized services offering translation functions among arbitrary sets of naming environments are outside the scope of the GSS-API; availability and use of local conversion functions to translate among the naming formats supported within a given end system is anticipated. Different classes of name representations are used in conjunction with different GSS-API parameters: - Internal form (denoted in this document by INTERNAL NAME), opaque to callers and defined by individual GSS-API implementations. GSS-API implementations supporting multiple namespace types must maintain internal tags to disambiguate the interpretation of particular names. A Mechanism Name (MN) is a special case of INTERNAL NAME, guaranteed to contain elements corresponding to one and only one mechanism; calls which are guaranteed to emit MNs or which require MNs as input are so identified within this specification. - Contiguous string ("flat") form (denoted in this document by OCTET STRING); accompanied by OID tags identifying the namespace to which they correspond. Depending on tag value, flat names may or may not be printable strings for direct acceptance from and presentation to users. Tagging of flat names allows GSS-API callers and underlying GSS-API mechanisms to disambiguate nameLinn Standards Track [Page 12]RFC 2078 GSS-API January 1997 types and to determine whether an associated name's type is one which they are capable of processing, avoiding aliasing problems which could result from misinterpreting a name of one type as a name of another type. - The GSS-API Exported Name Object, a special case of flat name designated by a reserved OID value, carries a canonicalized form of a name suitable for binary comparisons. In addition to providing means for names to be tagged with types, this specification defines primitives to support a level of naming environment independence for certain calling applications. To provide basic services oriented towards the requirements of callers which need not themselves interpret the internal syntax and semantics of names, GSS-API calls for name comparison (GSS_Compare_name()), human-readable display (GSS_Display_name()), input conversion (GSS_Import_name()), internal name deallocation (GSS_Release_name()), and internal name duplication (GSS_Duplicate_name()) functions are defined. (It is anticipated that these proposed GSS-API calls will be implemented in many end systems based on system-specific name manipulation primitives already extant within those end systems; inclusion within the GSS-API is intended to offer GSS-API callers a portable means to perform specific operations, supportive of authorization and audit requirements, on authenticated names.) GSS_Import_name() implementations can, where appropriate, support more than one printable syntax corresponding to a given namespace (e.g., alternative printable representations for X.500 Distinguished Names), allowing flexibility for their callers to select among alternative representations. GSS_Display_name() implementations output a printable syntax selected as appropriate to their operational environments; this selection is a local matter. Callers desiring portability across alternative printable syntaxes should refrain from implementing comparisons based on printable name forms and should instead use the GSS_Compare_name() call to determine whether or not one internal-format name matches another. The GSS_Canonicalize_name() and GSS_Export_name() calls enable callers to acquire and process Exported Name Objects, canonicalized and translated in accordance with the procedures of a particular GSS-API mechanism. Exported Name Objects can, in turn, be input to GSS_Import_name(), yielding equivalent MNs. These facilities are designed specifically to enable efficient storage and comparison of names (e.g., for use in access control lists).Linn Standards Track [Page 13]RFC 2078 GSS-API January 1997 The following diagram illustrates the intended dataflow among name- related GSS-API processing routines. GSS-API library defaults | | V text, for text --------------> internal_name (IN) -----------> display only import_name() / display_name() / / / accept_sec_context() / | / | / | / canonicalize_name() | / | / | / | / | / | | V V <--------------------- single mechanism import_name() exported name: flat internal_name (MN) binary "blob" usable ----------------------> for access control export_name()1.1.6: Channel Bindings The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") information. Channel bindings are used to strengthen the quality with which peer entity authentication is provided during context establishment, by limiting the scope within which an intercepted context establishment token can be reused by an attacker. Specifically, they enable GSS-API callers to bind the establishment of a security context to relevant characteristics (e.g., addresses, transformed representations of encryption keys) of the underlying communications channel, of protection mechanisms applied to that communications channel, and to application-specific data. The caller initiating a security context must determine the appropriate channel binding values to provide as input to the GSS_Init_sec_context() call, and consistent values must be provided to GSS_Accept_sec_context() by the context's target, in order for both peers' GSS-API mechanisms to validate that received tokens possess correct channel-related characteristics. Use or non-use ofLinn Standards Track [Page 14]RFC 2078 GSS-API January 1997 the GSS-API channel binding facility is a caller option. GSS-API mechanisms can operate in an environment where NULL channel bindings are presented; mechanism implementors are encouraged, but not required, to make use of caller-provided channel binding data within their mechanisms. Callers should not assume that underlying mechanisms provide confidentiality protection for channel binding information. When non-NULL channel bindings are provided by callers, certain mechanisms can offer enhanced security value by interpreting the bindings' content (rather than simply representing those bindings, or integrity check values computed on them, within tokens) and will therefore depend on presentation of specific data in a defined format. To this end, agreements among mechanism implementors are defining conventional interpretations for the contents of channel binding arguments, including address specifiers (with content dependent on communications protocol environment) for context initiators and acceptors. (These conventions are being incorporated in GSS-API mechanism specifications and into the GSS-API C language bindings specification.) In order for GSS-API callers to be portable across multiple mechanisms and achieve the full security functionality which each mechanism can provide, it is strongly recommended that GSS-API callers provide channel bindings consistent with these conventions and those of the networking environment in which they operate.1.2: GSS-API Features and Issues This section describes aspects of GSS-API operations, of the security services which the GSS-API provides, and provides commentary on design issues.1.2.1: Status Reporting Each GSS-API call provides two status return values. Major_status values provide a mechanism-independent indication of call status (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1 summarizes the defined major_status return codes in tabular fashion.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -