📄 rfc2878.txt
字号:
Layer Padding" field. This number tells the receiving system how many pad octets to strip off. MAC Type Up-to-date values of the MAC Type field are specified in the most recent "Assigned Numbers" RFC [4]. Current values are assigned as follows: 0: reserved 1: IEEE 802.3/Ethernet with canonical addresses 2: IEEE 802.4 with canonical addresses 3: IEEE 802.5 with non-canonical addresses 4: FDDI with non-canonical addresses 5-10: reserved 11: IEEE 802.5 with canonical addresses 12: FDDI with canonical addresses "Canonical" is the address format defined as standard address representation by the IEEE. In this format, the bit within each byte that is to be transmitted first on a LAN is represented as the least significant bit. In contrast, in non-canonical form, the bit within each byte that is to be transmitted first is represented as the most-significant bit. Many LAN interface implementations use non-canonical form. In both formats, bytes are represented in the order of transmission. If an implementation supports a MAC Type that is the higher- numbered format of that MAC Type, then it MUST also support the lower-numbered format of that MAC Type. For example, if an implementation supports FDDI with canonical address format, then it MUST also support FDDI with non-canonical address format. The purpose of this requirement is to provide backward compatibility with earlier versions of this specification. A system MUST NOT transmit a MAC Type numbered higher than 4 unless it has received from its peer a MAC-Support Configuration Option indicating that the peer is willing to receive frames of that MAC Type. Frame Control On 802.4, 802.5, and FDDI LANs, there are a few octets preceding the Destination MAC Address, one of which is protected by the FCS.Higashiyama & Baker Standards Track [Page 19]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 The MAC Type of the frame determines the contents of the Frame Control field. A pad octet is present to provide 32-bit packet alignment. Destination MAC Address As defined by the IEEE. The MAC Type field defines the bit ordering. Source MAC Address As defined by the IEEE. The MAC Type field defines the bit ordering. Pri 3 bit priority value as defined by IEEE 802.1D. C Canonical flag as defined by IEEE 802.1Q. It must be set if RIF data is present in the LLC data. VLAN ID 12 bit VLAN identifier number as defined by IEEE 802.1Q. LLC data This is the remainder of the MAC frame which is (or would be were it present) protected by the LAN FCS. For example, the 802.5 Access Control field, and Status Trailer are not meaningful to transmit to another ring, and are omitted. LAN FCS If present, this is the LAN FCS which was calculated by (or which appears to have been calculated by) the originating station. If the LAN FCS flag is not set, then this field is not present, and the PDU is four octets shorter. Optional Data Link Layer Padding Any PPP frame may have padding inserted between the Information field and the Frame FCS. The Pads field contains the length of this padding, which may not exceed 15 octets. The PPP LCP Extensions [5] specify a self-describing pad. Implementations are encouraged to set the Pads field to zero, and use the self-describing pad instead.Higashiyama & Baker Standards Track [Page 20]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 Frame FCS Mentioned primarily for clarity. The FCS used on the PPP link is separate from and unrelated to the LAN FCS.4.4. Bridge protocols and GARP protocols To avoid network loops and improve redundancy, Bridges exchange a Spanning Tree Protocol data unit known as BPDU. Bridges also exchange a Generic Attributes Registration Protocol data unit to carry the GARP VLAN Registration Protocol (GVRP) data and GARP Multicast Registration Protocol (GMRP). GVRP allow the Bridges to create VLAN groups dynamically. GMRP allows bridges to filter Multicast data if the receiver is absent from the network. These Bridge protocols include Spanning Tree Protocol and GARP protocols data units are carried with a special destination address assigned by the IEEE. These bridge protocols data units and GARP protocol data units must be carried in the frame format shown in section 4.2 or 4.3. The Bridge that receives these data units identifies these protocols based on the destination address in the frame format, just like the operation of receiving frames from a LAN segment. Bridge protocols and GARP protocols data units MUST be recognized by checking the destination addresses, which are assigned by IEEE. 01-80-c2-00-00-00 Bridge Group Address (used by STP) 01-80-c2-00-00-01 IEEE Std. 802.3x Full Duplex PAUSE operation 01-80-c2-00-00-10 Bridge Management Group Address 01-80-c2-00-00-20 GARP Multicast Registration Protocol (GMRP) 01-80-c2-00-00-21 GARP VLAN Registration Protocol (GVRP) But there is one exception to this rule: if the bridge is connected to an old BCP bridge [10] and can support backward compatibility, it MUST send the BPDU in the old format described in Appendix A.5. BCP Configuration Options BCP Configuration Options allow modifications to the standard characteristics of the network-layer protocol to be negotiated. If a Configuration Option is not included in a Configure-Request packet, the default value for that Configuration Option is assumed. BCP uses the same Configuration Option format defined for LCP [6], with a separate set of Options.Higashiyama & Baker Standards Track [Page 21]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 Up-to-date values of the BCP Option Type field are specified in the most recent "Assigned Numbers" RFC [4]. Current values are assigned as follows: 1 Bridge-Identification 2 Line-Identification 3 MAC-Support 4 Tinygram-Compression 5 LAN-Identification (obsoleted) 6 MAC-Address 7 Spanning-Tree-Protocol (old formatted) 8 IEEE 802 Tagged Frame 9 Management Inline5.1. Bridge-Identification Description The Bridge-Identification Configuration Option is designed for use when the line is an interface between half bridges connecting virtual or physical LAN segments. Since these remote bridges are modeled as a single bridge with a strange internal interface, each remote bridge needs to know the LAN segment and bridge numbers of the adjacent remote bridge. This option MUST NOT be included in the same Configure-Request as the Line-Identification option. The Source Routing Route Descriptor and its use are specified by the IEEE 802.1D Appendix on Source Routing. It identifies the segment to which the interface is attached by its configured segment number, and itself by bridge number on the segment. The two half bridges MUST agree on the bridge number. If a bridge number is not agreed upon, the Bridging Control Protocol MUST NOT enter the Opened state. Since mismatched bridge numbers are indicative of a configuration error, a correct configuration requires that either the bridge declare the misconfiguration or choose one of the options. To allow two systems to proceed to the Opened state despite a mismatch, a system MAY change its bridge number to the higher of the two numbers. A higher-numbered system MUST NOT change its bridge number to a lower number. It should, however, inform the network administration of the misconfiguration in any case. By default, a system that does not negotiate this option is assumed to be configured not to use the model of the two systems as two halves of a single source-route bridge. It is insteadHigashiyama & Baker Standards Track [Page 22]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 assumed to be configured to use the model of the two systems as two independent bridges. Example If System A announces LAN Segment AAA, Bridge #1, and System B announces LAN Segment BBB, Bridge #1, then the resulting Source Routing configuration (read in the appropriate direction) is then AAA,1,BBB. A summary of the Bridge-Identification Option format is shown below. The fields are transmitted from left to right. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | LAN Segment Number |Bridge#| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type 1 Length 4 LAN Segment Number A 12-bit number identifying the LAN segment, as defined in the IEEE 802.1D Source Routing Specification. Bridge Number A 4-bit number identifying the bridge on the LAN segment, as defined in the IEEE 802.1D Source Routing Specification.5.2. Line-Identification Description The Line-Identification Configuration Option is designed for use when the line is assigned a LAN segment number as though it were a two system LAN segment in accordance with the Source Routing algorithm.Higashiyama & Baker Standards Track [Page 23]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 The Source Routing Route Descriptor and its use are specified by the IEEE 802.1D Appendix on Source Routing. It identifies the segment to which the interface is attached by its configured segment number, and itself by bridge number on the segment. The two bridges MUST agree on the LAN segment number. If a LAN segment number is not agreed upon, the Bridging Control Protocol MUST NOT enter the Opened state. Since mismatched LAN segment numbers are indicative of a configuration error, a correct configuration requires that either the bridge declare the misconfiguration or choose one of the options. To allow two systems to proceed to the Opened state despite a mismatch, a system MAY change its LAN segment number to the higher of the two numbers. A higher-numbered system MUST NOT change its LAN segment number to a lower number. It should, however, inform the network administration of the misconfiguration in any case. By default, a system that does not negotiate this option is assumed to have its LAN segment number correctly configured by the user. A summary of the Line-Identification Option format is shown below. The fields are transmitted from left to right. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | LAN Segment Number |Bridge#| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type 2 Length 4 LAN Segment Number A 12-bit number identifying the LAN segment, as defined in the IEEE 802.1D Source Routing Specification.Higashiyama & Baker Standards Track [Page 24]RFC 2878 PPP Bridging Control Protocol (BCP) July 2000 Bridge Number A 4-bit number identifying the bridge on the LAN segment, as defined in the IEEE 802.1D Source Routing Specification.5.3. MAC-Support
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -