📄 rfc1114.txt
字号:
The following attributes are optional in subject Distinguished Names for purposes of this RFC: 1. Organizational Unit Name(s) (e.g., the Printable String "BBN Communications Corporation") A hierarchy of up to four organizational unit names may be provided; the least significant member of the hierarchy is represented first. Each of these attributes has a maximum ASCII character length of thirty-two (32), for a total of one-hundred and twenty-eight (128) characters if all four are present.3.4.1.4 Issuer Name A certificate provides a representation of its issuer's identity, in the form of a Distinguished Name. The issuer identification is needed in order to determine the appropriate issuer public component to use in performing certificate validation. The following attributes are required in issuer Distinguished Names for purposes of this RFC: 1. Country Name (e.g., encoding for "US") 2. Organizational Name The following attributes are optional in issuer Distinguished Names for purposes of this RFC: 1. Organizational Unit Name(s). (A hierarchy of up to four organizational unit names may be provided; the least significant member of the hierarchy is represented first.) If the issuer is vouching for the user identity in the Notary capacity described above, then exactly one instance of this field must be present and it must consist of the string "Notary". As noted earlier, only organizations are allowed as issuers in the proposed authentication hierarchy. Hence the Distinguished Name for an issuer should always be that of an organization, not a user, and thus no Personal Name field may be included in the Distinguished Name of an issuer.3.4.1.5 Validity Period A certificate carries a pair of time specifiers, indicating the start and end of the time period over which a certificate is intended to be used. No message should ever be prepared for transmission with a non-current certificate, but recipients should be prepared to receive messages processed using recently-expired certificates. This fact results from the unpredictable (and sometimes substantial)Kent & Linn [Page 19]RFC 1114 Mail Privacy: Key Management August 1989 transmission delay of the staged-delivery electronic mail environment. The default and maximum validity period for certificates issued in this system will be two years.3.4.1.6 Subject Public Component A certificate carries the public component of its associated entity, as well as an indication of the algorithm with which the public component is to be used. For purposes of this RFC, the algorithm identifier will indicate use of the RSA algorithm, as specified in RFC-1115. Note that in this context, a user's public component is actually the modulus employed in RSA algorithm calculations. A "universal" (public) exponent is employed in conjunction with the modulus to complete the system. Two choices of exponents are recommended for use in this context and are described in section 3.4.3. Modulus size will be permitted to vary between 320 and 632 bits.3.4.1.7 Certificate Signature A certificate carries a signature algorithm identifier and a signature, applied to the certificate by its issuer. The signature is validated by the user of a certificate, in order to determine that the integrity of its contents have not been compromised subsequent to generation by a CA. An encrypted, one-way hash will be employed as the signature algorithm. Hash functions suitable for use in this context are notoriously difficult to design and tend to be computationally intensive. Initially we have adopted a hash function developed by RSADSI and which exhibits performance roughly equivalent to the DES (in software). This same function has been selected for use in other contexts in this system where a hash function (message hash algorithm) is required, e.g., MIC for multicast messages. In the future we expect other one-way hash functions will be added to the list of algorithms designated for this purpose.3.4.2 Validation Conventions Validating a certificate involves verifying that the signature affixed to the certificate is valid, i.e., that the hash value computed on the certificate contents matches the value that results from decrypting the signature field using the public component of the issuer. In order to perform this operation the user must possess the public component of the issuer, either via some integrity-assured channel, or by extracting it from another (validated) certificate. In the proposed architecture this recursive operation is terminated quickly by adopting the convention that RSADSI will certify the certificates of all organizations or organizational units which act as issuers for end users. (Additional validation steps may beKent & Linn [Page 20]RFC 1114 Mail Privacy: Key Management August 1989 required for certificates issued by other CAs as described in section 3.3.3.1.) Certification means that RSADSI will sign certificates in which the subject is the organization or organizational unit and for which RSADSI is the issuer, thus implying that RSADSI vouches for the credentials of the subject. This is an appropriate construct since each ON representing an organization or organizational unit must have registered with RSADSI via a procedure more rigorous than individual user registration. This does not preclude an organizational unit from also holding a certificate in which the "parent" organization (or organizational unit) is the issuer. Both certificates are appropriate and permitted in the X.509 framework. However, in order to facilitate the validation process in an environment where user- level directory services are generally not available, we will (at this time) adopt this certification convention. The public component needed to validate certificates signed by RSADSI (in its role as a CA for issuers) is transmitted to each user as part of the registration process (using electronic mail with independent, postal confirmation via a message hash). Thus a user will be able to validate any user certificate (from the RSADSI hierarchy) in at most two steps. Consider the situation in which a user receives a privacy enhanced message from an originator with whom the recipient has never previously corresponded. Based on the certification convention described above, the recipient can use the RSADSI public component to validate the issuer's certificate contained in the X-Issuer- Certificate field. (We recommend that, initially, the originator include his organization's certificate in this optional field so that the recipient need not access a server or cache for this public component.) Using the issuer's public component (extracted from this certificate), the recipient can validate the originator's certificate contained in the X-Certificate field of the header. Having performed this certificate validation process, the recipient can extract the originator's public component and use it to decrypt the content of the X-MIC-Info field and thus verify the data origin authenticity and integrity of the message. Of course, implementations of privacy enhanced mail should cache validated public components (acquired from incoming mail or via the message from a user registration process) to speed up this process. If a message arrives from an originator whose public component is held in the recipient's cache, the recipient can immediately employ that public component without the need for the certificate validation process described here. Also note that the arithmetic required for certificate validation is considerably faster than that involved in digitally signing a certificate, so as to minimize the computational burden on users.Kent & Linn [Page 21]RFC 1114 Mail Privacy: Key Management August 1989 A separate issue associated with validation of certificates is a semantic one, i.e., is the entity identified in the issuer field appropriate to vouch for the identifying information in the subject field. This is a topic outside the scope of X.509, but one which must be addressed in any viable system. The hierarchy proposed in this RFC is designed to address this issue. In most cases a user will claim, as part of his identifying information, affiliation with some organization and that organization will have the means and responsibility for verifying this identifying information. In such circumstances one should expect an obvious relationship between the Distinguished Name components in the issuer and subject fields. For example, if the subject field of a certificate identified an individual as affiliated with the "Widget Systems Division" (Organizational Unit Name) of "Compudigicorp" (Organizational Name), one would expect the issuer field to specify "Compudigicorp" as the Organizational Name and, if an Organizational Unit Name were present, it should be "Widget Systems Division." If the issuer's certificate indicated "Compudigicorp" as the subject (with no Organizational Unit specified), then the issuer should be "RSADSI." If the issuer's certificate indicated "Widget Systems Division" as Organizational Unit and "Compudigicorp" as Organization in the subject field, then the issuer could be either "RSADSI" (due to the direct certification convention described earlier) or "Compudigicorp" (if the organization elected to distribute this intermediate level certificate). In the later case, the certificate path would involve an additional step using the certificate in which "Compudigicorp" is the subject and "RSADSI" is the issuer. One should be suspicious if the validation path does not indicate a subset relationship for the subject and issuer Distinguished Names in the certification path, expect where cross-certification is employed to cross CA boundaries. It is a local matter whether the message system presents a human user with the certification path used to validate a certificate associated with incoming, privacy-enhanced mail. We note that a visual display of the Distinguished Names involved in that path is one means of providing the user with the necessary information. We recommend, however, that certificate validation software incorporate checks and alert the user whenever the expected certification path relationships are not present. The rationale here is that regular display of certification path data will likely be ignored by users, whereas automated checking with a warning provision is a more effective means of alerting users to possible certification path anomalies. We urge developers to provide facilities of this sort.3.4.3 Relation with X.509 Certificate Specification An X.509 certificate can be viewed as two components: contents and anKent & Linn [Page 22]RFC 1114 Mail Privacy: Key Management August 1989 encrypted hash. The encrypted hash is formed and processed as follows: 1. X, the hash, is computed as a function of the certificate contents 2. the hash is signed by raising X to the power e (modulo n) 3. the hash's signature is validated by raising the result of step 2 to the power d (modulo n), yielding X, which is compared with the result computed as a function of certificate contents. Annex C to X.509 suggests the use of Fermat number F4 (65537 decimal, 1 + 2 **16 ) as a fixed value for e which allows relatively efficient authentication processing, i.e., at most seventeen (17) multiplications are required to effect exponentiation). As an alternative one can employ three (3) as the value for e, yielding even faster exponentiation, but some precautions must be observed (see RFC-1115). Users of the algorithm select values for d (a secret quantity) and n (a non-secret quantity) given this fixed value for e. As noted earlier, this RFC proposes that either three (3) or F4 be employed as universal encryption exponents, with the choice specified in the algorithm identifier. In particular, use of an exponent value of three (3) for certificate validation is encouraged, to permit rapid certificate validation. Given these conventions, a user's public co
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -