📄 rfc1265.txt
字号:
RFC 1265 BGP Protocol Analysis October 1991 of BGP with EGP. While with BGP the complete information is exchanged only at the connection establishment time, with EGP the complete information is exchanged periodically (usually every 3 minutes). Note that both for BGP and for EGP the amount of information exchanged is roughly on the order of the networks reachable via a peer that sends the information (see also Section 5.2). Therefore, even if one assumes extreme instabilities of BGP, its worst case behavior will be the same as the steady state behavior of EGP. Operational experience with BGP showed that the incremental updates approach employed by BGP presents an enormous improvement both in the area of bandwidth and in the CPU utilization, as compared with complete periodic updates used by EGP (see also presentation by Dennis Ferguson at the Twentieth IETF, March 11-15, 1991, St.Louis).5.2 Memory requirements. To quantify the worst case memory requirements for BGP, denote the total number of networks in the Internet by N, the mean AS distance of the Internet by M (distance at the level of an autonomous system, expressed in terms of the number of autonomous systems), the total number of autonomous systems in the Internet by A, and the total number of BGP speakers that a system is peering with by K (note that K will usually be dominated by the total number of the BGP speakers within a single autonomous system). Then the worst case memory requirements (MR) can be expressed as MR = O((N + M * A) * K) In the current NSFNET Backbone (N = 2110, A = 59, and M = 5) if each network is stored as 4 octets, and each autonomous system is stored as 2 octets then the overhead of storing the AS path information (in addition to the full complement of exterior routes) is less than 7 percent of the total memory usage. It is interesting to point out, that prior to the introduction of BGP in the NSFNET Backbone, memory requirements on the NSFNET Backbone routers running EGP were on the order of O(N * K). Therefore, the extra overhead in memory incurred by the NSFNET routers after the introduction of BGP is less than 7 percent. Since a mean AS distance grows very slowly with the total number of networks (there are about 60 autonomous systems, well over 2,000 networks known in the NSFNET backbone routers, and the mean AS distance of the current Internet is well below 5), for all practical purposes the worst case router memory requirements are on the order of the total number of networks in the Internet times the number of peers the local system is peering with. We expect that the totalBGP Working Group [Page 5]RFC 1265 BGP Protocol Analysis October 1991 number of networks in the Internet will grow much faster than the average number of peers per router. Therefore, scaling with respect to the memory requirements is going to be heavily dominated by the factor that is linearly proportional to the total number of networks in the Internet. The following table illustrates typical memory requirements of a router running BGP. It is assumed that each network is encoded as 4 bytes, each AS is encoded as 2 bytes, and each networks is reachable via some fraction of all of the peers (# BGP peers/per net).# Networks Mean AS Distance # AS's # BGP peers/per net Memory Req---------- ---------------- ------ ------------------- ----------2,100 5 59 3 27,000 bytes4,000 10 100 6 108,000 bytes10,000 15 300 10 490,000 bytes100,000 20 3,000 20 1,040,000 bytes To put memory requirements of BGP in a proper perspective, let's try to put aside for a moment the issue of what information is used to construct the forwarding tables in a router, and just focus on the forwarding tables themselves. In this case one might ask about the limits on these tables. For instance, given that right now the forwarding tables in the NSFNET Backbone routers carry well over 2,000 entries, one might ask whether it would be possible to have a functional router with a table that will have 20,000 entries. Clearly the answer to this question is completely independent of BGP. On the other hand the answer to the original questions (that was asked with respect to BGP) is directly related to the latter question. Very interesting comments were given by Paul Tsuchiya in his review of BGP in March of 1990 (as part of the BGP review committee appointed by Bob Hinden). In the review he said that, "BGP does not scale well. This is not really the fault of BGP. It is the fault of the flat IP address space. Given the flat IP address space, any routing protocol must carry network numbers in its updates." To reiterate, BGP limits with respect to the memory requirements are directly related to the underlying Internet Protocol (IP), and specifically the addressing scheme employed by IP. BGP would provide much better scaling in environments with more flexible addressing schemes. It should be pointed out that with very minor additions BGP can be extended to support hierarchies of autonomous system. Such hierarchies, combined with an addressing scheme that would allow more flexible address aggregation capabilities, can be utilized by BGP, thus providing practically unlimited scaling capabilities of the protocol.BGP Working Group [Page 6]RFC 1265 BGP Protocol Analysis October 19916. Applicability of BGP. In this section we'll try to answer the question of what environment is BGP well suited, and for what is it not suitable? Partially this question is answered in the Section 2 of [1], where the document states the following: "To characterize the set of policy decisions that can be enforced using BGP, one must focus on the rule that an AS advertises to its neighbor ASs only those routes that it itself uses. This rule reflects the "hop-by-hop" routing paradigm generally used throughout the current Internet. Note that some policies cannot be supported by the "hop-by-hop" routing paradigm and thus require techniques such as source routing to enforce. For example, BGP does not enable one AS to send traffic to a neighbor AS intending that the traffic take a different route from that taken by traffic originating in the neighbor AS. On the other hand, BGP can support any policy conforming to the "hop-by-hop" routing paradigm. Since the current Internet uses only the "hop-by-hop" routing paradigm and since BGP can support any policy that conforms to that paradigm, BGP is highly applicable as an inter-AS routing protocol for the current Internet." While BGP is well suitable for the current Internet, it is also almost a necessity for the current Internet as well. Operational experience with EGP showed that it is highly inadequate for the current Internet. Topological restrictions imposed by EGP are unjustifiable from the technical point of view, and unenforceable from the practical point of view. Inability of EGP to efficiently handle information exchange between peers is a cause of severe routing instabilities in the operational Internet. Finally, information provided by BGP is well suitable for enforcing a variety of routing policies. Rather than trying to predict the future, and overload BGP with a variety of functions that may (or may not) be needed, the designers of BGP took a different approach. The protocol contains only the functionality that is essential, while at the same time provides flexible mechanisms within the protocol itself that allow to expand its functionality. Since BGP was designed with flexibility and expandability in mind, we think it should be able to address new or evolving requirements with relative ease. The existence proof of this statement may be found in the way how new features (like repairing a partitioned autonomous system with BGP) are already introduced in the protocol. To summarize, BGP is well suitable as an inter-autonomous system routing protocol for the current Internet that is based on IP (RFC 791) as the Internet Protocol and "hop-by-hop" routing paradigm. ItBGP Working Group [Page 7]RFC 1265 BGP Protocol Analysis October 1991 is hard to speculate whether BGP will be suitable for other environments where internetting is done by other than IP protocols, or where the routing paradigm will be different.References [1] Lougheed, K., and Y. Rekhter, "A Border Gateway Protocol 3 (BGP- 3)", RFC 1267, cisco Systems, T.J. Watson Research Center, IBM Corp., October 1991. [2] Rekhter, Y., and P. Gross, Editors, "Application of the Border Gateway Protocol in the Internet", RFC 1268, T.J. Watson Research Center, IBM Corp., ANS, October 1991.Security Considerations Security issues are not discussed in this memo.Author's Address Yakov Rekhter T.J. Watson Research Center IBM Corporation P.O. Box 218 Yorktown Heights, NY 10598 Phone: (914) 945-3896 EMail: yakov@watson.ibm.com IETF BGP WG mailing list: iwg@rice.edu To be added: iwg-request@rice.eduBGP Working Group [Page 8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -