📄 rfc2636.txt
字号:
* Update roaming listsGellens Informational [Page 6]RFC 2636 OTASP/OTAPA via ACAP July 19993. Operation3.1. Initial Provisioning Activity A new subscriber needs to give the intended service provider sufficient information (e.g., name, address, etc.) to prove credit- worthiness and establish a record within the service provider's billing system. In addition, the ESN of the mobile station needs to be given to the provider. This may occur in three ways: Voice scenario -- A customer care representative collects credit information during a voice conversation. This call is made from a different phone (e.g., wired service) or is initiated using the IS- 683A OTASP dialing scheme (i.e., *228xx). Once the user has been authorized, the customer care representative creates a record in the CDMA network HLR, thus allowing use of the CDMA network. In addition, a limited-time N-digit password is created which is tied to the ESN. The choice of N (how many digits) is up to the carrier (as a trade-off between security and user inconvenience). All required provisioning information (including the limited-time password) is loaded into the provisioning server. The user is then told to hang up and call a special number, of the form *228 XX <N-digit password> SEND (the XX code is the same as used in the initial voice call). This causes the mobile station to initiate a provisioning session. The mobile station and the provisioning server authenticate, and all required provisioning information is downloaded into the mobile station. The user receives some form of notification once the activity is complete. This notification can be an audible tone or a text message on the mobile station display. (The form and content of this notification can be part of the provisioning data downloaded by the mobile station.) Once this initial provisioning activity is complete the user has a fully authorized mobile station ready for use. Forms scenario -- An interactive user interface is presented via a browser on the mobile station. The subscriber fills in the requested information. (Note that entering non-numeric data presents some user interface challenges on many mobile devices.) A back-end server validates the information, and if possible, the customer is authorized, a limited-time password is generated, HLR and provisioning server records are created and the actual OTASP operation begins. Otherwise, a voice call is made to a customer care representative.Gellens Informational [Page 7]RFC 2636 OTASP/OTAPA via ACAP July 1999 Desktop scenario -- The subscriber uses a desktop (or in-store kiosk) web browser to contact the carrier, and enters the usual personal information. The carrier's server validates the information, and if possible, the customer is authorized, a limited-time password is generated, HLR and provisioning server records are created, and the subscriber is told to dial a special number on the handset. Once this code is entered, the actual OTASP operation begins. Otherwise, the user is asked to make a voice call to a customer care representative.3.2. OTASP for Authorized Users Users already authorized for use of the CDMA network can also initiate provisioning activity. This could happen after being directed to do so by a Customer Care representative, either from a phone conversation or via mail notification. This type of OTASP activity is needed in cases where the carrier desires to upgrade CDMA parameters in the mobile stations or in cases where mobile station troubleshooting is needed. This type of OTASP occurs in similar fashion to the initial OTASP activity. The mobile station downloads the new provisioning information in the same way.3.3 OTAPA Activity Typical OTAPA capability involves upgrading a large number of mobile stations. OTAPA activity needs to be performed in a manner that does not impose on revenue bearing CDMA network activity. OTAPA operations are initiated at the customer care center. This can be accomplished by queuing a notification to the mobile station (via 1-way SMS or special caller-ID) after the provisioning server has the updated configuration data. OTAPA activity will not occur until the mobile station has acquired CDMA service on the carrier's network and the notification has reached the mobile station. Alternatively, OTAPA can be handled by including a recheck interval in the set of data used to provision the mobile station. When using a low-overhead protocol, such as ACAP [ACAP], it is reasonable to have a mobile station check in periodically to see if anything has changed. The time of day and/or day of week that such rechecks should occur could be included in the provisioning data. OTAPA activity can be terminated at any time due to user call activity.Gellens Informational [Page 8]RFC 2636 OTASP/OTAPA via ACAP July 19994. Requirements4.1. General Requirements IS-683A OTASP operations occur between a mobile station and an over-the-air service provisioning function (OTAF) using IS-95A traffic channel data burst messages. OTASP/OTAPA via data services require that the CDMA carrier have an IS-707 data services capable network. The IS-707 service must be either Packet Data Service (IS-707.5) or Quick-Net-Connect (QNC). The mobile station must support: * IS-707 Data Service capability * Packet/QNC RLP protocol * PPP protocol to peer to the IS-707 IWF * IP protocol to provide the network layer for routing to the provisioning server * A transport layer for end-to-end communication (such as TCP) * Authentication and optionally encryption * Application software to handle the provisioning protocol and memory access. * Domain Name System (DNS) query capabilities sufficient to obtain the (IP) address of the provisioning server (or the provisioning server's address could be provided during PPP negotiation). Lastly, the ability must exist for the mobile to make a data call (optionally) a voice call without a MIN.4.2. OTASP Requirements The OTASP function requires the mobile station to originate an IS- 707 data call and (optionally) a voice call using a completely unprovisioned mobile station. The CDMA network must support this capability. OTASP via data services uses a provisioning server that contains the parameter information for mobile stations. The authorizing agent (or software) at the customer care center must be able to add user and mobile station information into both the CDMA network HLR andGellens Informational [Page 9]RFC 2636 OTASP/OTAPA via ACAP July 1999 the provisioning server during the initial authorizing process. The provisioning server must be capable of servicing a mobile as soon as its record is created.4.3. OTAPA Requirements IS-683A OTAPA is performed by a mobile-terminated call that downloads parameters to the mobile station. OTAPA calls occur without user interaction. In order to perform OTAPA via data services the network needs to direct the mobile station to initiate a special-purpose data call. Several existing methods can be used to implement this capability, for example, a mobile-terminated one-way SMS message. The SMS message content can contain any information required by the mobile station. The mobile station would need a simple parser of SMS messages in order to know when to originate an OTAPA call, as opposed to normal SMS message processing. The OTAPA call would be performed in similar fashion to a registration call. More specifically, the user would not be informed of the call activity. There are alternative means that can be employed to initiate OTAPA activity; for example, a mobile-terminated voice call with caller-ID using a specialized telephone number. Another alternative is for mobile stations to periodically check in with the provisioning server to check for updated information. ACAP, for example, is designed for such a model. The recheck interval, as well as the time of day and/or day of week that such checks should be used, can be part of the provisioning data sent to the mobile stations.4.4. Provisioning Server Requirements IS-683A utilizes an over-the-air service provisioning function (OTAF) to perform the network-side provisioning activity. OTASP/OTAPA via data services replaces the OTAF with a provisioning server. The provisioning server resides on an IP network within the controlled confines of the carrier. The provisioning server must perform all the service provisioning and parameter administration functions that the OTAF provides. The provisioning server must also have an interface to the carrier's Mobile Terminal Authorizing System (MTAS). This interface serves to synchronize the provisioning server with the information in the MTAS. The specific requirements of this interface depend on the capabilities and interfaces of the carrier's customer care center system(s). The provisioning server must be capable of receiving dynamic updates from the MTAS and have the provisioning information immediatelyGellens Informational [Page 10]RFC 2636 OTASP/OTAPA via ACAP July 1999 available for downloading into the chosen mobile station. A standard ACAP server provides an excellent means to meet these requirements. The provisioning server must be capable of performing an authentication procedure with the mobile station. This authentication mechanism must be capable of authenticating both the mobile station and the provisioning server.4.5. Security Requirements OTASP requires that an authentication procedure be performed to validate the mobile station to the provisioning server, while OTAPA requires a mechanism where the mobile validates the server. The provisioning server must be capable of either: * OTAF A-key generation using a Diffie-Hellman mechanism Or: * Receiving A-keys from the carrier network. Since data OTASP/OTAPA operates over IP within the carrier's network, end-to-end encryption between the mobile station and the provisioning server should be considered as a future enhancement. End-to-end encryption protects against attacks from within a carrier's network, and safeguards the provisioning data (for example, roaming lists).5. Architecture5.1. ACAP over TCP/IP Figure 1 shows a provisioning server in the carrier's intranet which supports the Application Configuration Access Protocol (ACAP, RFC 2244). An administrative client in the customer care domain updates this server using ACAP. Handsets are provisioned and configured using a small ACAP client. [Figure 1 -- see PostScript version] ACAP is an open Internet protocol designed to solve the problem of client access to configuration and related data. Among its primary goals are protocol simplicity, support for thin clients, and ease of operation over limited bandwidth. ACAP provides a high degree of extensibility, especially in authentication mechanisms, specialized attribute handling, and data management.Gellens Informational [Page 11]RFC 2636 OTASP/OTAPA via ACAP July 19995.1.1. Mobile Authentication and A-Key Generation The mobile client authenticates with the ACAP server prior to performing any activities. Authentication uses the mobile's ESN and a shared secret. Provisioned mobiles derive the shared secret from the A-Key; unprovisioned mobiles use a limited-time password as the secret. The limited-time password is provided to the user by the Customer Care representative during the initial call (as instructions to dial a specific number). This code is N digits long. The carrier selects the number of digits, as a trade-off between security and user convenience. The baseline ACAP authentication mechanism uses the shared secret plus a random challenge from the server as input to a one-way cryptographic hash function (specifically, keyed-MD5). This is analogous to the existing IS-683A authentication mechanism which uses a random challenge and the CAVE algorithm. An A-Key is generated using a Diffie-Hellman exchange, as is done in IS-683A.5.1.2. Mobile Identification Provisioning records are identified using the ESN and the current NAM in use.5.1.3. ACAP Server
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -