📄 rfc1677.txt
字号:
Network Working Group B. AdamsonRequest for Comments: 1677 Naval Research LaboratoryCategory: Informational August 1994 Tactical Radio Frequency Communication Requirements for IPngStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document was submitted to the IETF IPng area in response to RFC 1550. Publication of this document does not imply acceptance by the IPng area of any ideas expressed within. Comments should be submitted to the big-internet@munnari.oz.au mailing list.Executive Summary The U.S. Navy has several efforts exploring the applicability of commercial internetworking technology to tactical RF networks. Some these include the NATO Communication System Network Interoperability (CSNI) project, the Naval Research Laboratory Data/Voice Integration Advanced Technology Demonstration (D/V ATD), and the Navy Communication Support System (CSS) architecture development. Critical requirements have been identified for security, mobility, real-time data delivery applications, multicast, and quality-of- service and policy based routing. Address scaling for Navy application of internet technology will include potentially very large numbers of local (intra-platform) distributed information and weapons systems and a smaller number of nodes requiring global connectivity. The flexibility of the current Internet Protocol (IP) for supporting widely different communication media should be preserved to meet the needs of the highly heterogeneous networks of the tactical environment. Compact protocol headers are necessary for efficient data transfer on the relatively-low throughput RF systems. Mechanisms which can enhance the effectiveness of an internet datagram protocol to provide resource reservation, priority, and service quality guarantees are also very important. The broadcast nature of many RF networks and the need for broad dissemination of information to warfighting participants makes multicast the general case for information flow in the tactical environment.Adamson [Page 1]RFC 1677 IPng Tactical RF Requirements August 1994Background This paper describes requirements for Internet Protocol next generation (IPng) candidates with respect to their application to military tactical radio frequency (RF) communication networks. The foundation for these requirements are experiences in the NATO Communication System Network Interoperability (CSNI) project, the Naval Research Laboratory Data/Voice Integration Advanced Technology Demonstration (D/V ATD), and the Navy Communication Support System (CSS) architecture development. The goal of the CSNI project is to apply internetworking technology to facilitate multi-national interoperability for typical military communication applications (e.g., electronic messaging, tactical data exchange, and digital voice) on typical tactical RF communication links and networks. The International Standard Organization (ISO) Open Systems Interconnect (OSI) protocol suite, including the Connectionless Network Protocol (CLNP), was selected for this project for policy reasons. This paper will address design issues encountered in meeting the project goals with this particular protocol stack. The D/V ATD is focused on demonstrating a survivable, self- configuring, self-recovering RF subnetwork technology capable of simultaneously supporting data delivery, including message transfer, imagery, and tactical data, and real-time digital voice applications. Support for real-time interactive communication applications was extended to include a "white board" and other similar applications. IP datagram delivery is also planned as part of this demonstration system. The CSS architecture will provide U.S. Navy tactical platforms with a broad array of user-transparent voice and data information exchange services. This will include support for sharing and management of limited platform communication resources among multiple warfighting communities. Emphasis is placed on attaining interoperability with other military services and foreign allies. Utilization of commercial off-the-shelf communications products to take advantage of existing economies of scale is important to make any resulting system design affordable. It is anticipated that open, voluntary standards, and flexible communication protocols, such as IP, will play a key role in meeting the goals of this architecture.Introduction Before addressing any IPng requirements as applied to tactical RF communications, it is necessary to define what this paper means by "IPng requirements". To maintain brevity, this paper will focus onAdamson [Page 2]RFC 1677 IPng Tactical RF Requirements August 1994 criteria related specifically to the design of an OSI model's Layer 3 protocol format and a few other areas suggested by RFC 1550. There are several additional areas of concern in applying internetwork protocols to the military tactical RF setting including routing protocol design, address assignment, network management, and resource management. While these areas are equally important, this paper will attempt to satisfy the purpose of RFC 1550 and address issues more directly applicable to selection of an IPng candidate.Scaling The projection given in RFC 1550 that IPng should be able to deal with 10 to the 12th nodes is more than adequate in the face of military requirements. More important is that it is possible to assign addresses efficiently. For example, although a military platform may have a relatively small number of nodes with requirements to communicate with a larger, global infrastructure, there will likely be applications of IPng to management and control of distributed systems (e.g., specific radio communications equipment and processors, weapons systems, etc.) within the platform. This local expansion of address space requirements may not necessarily need to be solved by "sheer numbers" of globally-unique addresses but perhaps by alternate delimitation of addressing to differentiate between globally-unique and locally-unique addressing. The advantages of a compact internet address header are clear for relatively low capacity RF networks.Timescale, Transition and Deployment The U.S. Navy and other services are only recently (the last few years) beginning to design and deploy systems utilizing open systems internetworking technology. From this point of view, the time scale for selection of IPng must be somewhat rapid. Otherwise, two transition phases will need to be suffered, 1) the move from unique, "stove pipe" systems to open, internetworked (e.g., IP) systems, and then 2) a transition from deployed IP-based systems to IPng. In some sense, if an IPng is quickly accepted and widely implemented, the transition for tactical military systems will be somewhat easier than the enterprise Internet where a large investment in current IP already exists. However, having said this, the Department of Defense as a whole already deploys a large number of IP-capable systems, and the issue of transition from IP to IPng remains significant.Security As with any military system, information security, including confidentiality and authenticity of data, is of paramount importance. With regards to IPng, network layer security mechanisms for tacticalAdamson [Page 3]RFC 1677 IPng Tactical RF Requirements August 1994 RF networks generally important for authentication purposes, including routing protocol authentication, source authentication, and user network access control. Concerns for denial of service attacks, traffic analysis monitoring, etc., usually dictate that tactical RF communication networks provide link layer security mechanisms. Compartmentalization and multiple levels of security for different users of common communication resources call for additional security mechanisms at the transport layer or above. In the typical tactical RF environment, network layer confidentiality and, in some cases, even authentication becomes redundant with these other security mechanisms. The need for network layer security mechanisms becomes more critical when the military utilizes commercial telecommunications systems or has tactical systems inter-connected with commercial internets. While the Network Encryption Server (NES) works in this role today, there is a desire for a more integrated, higher performance solution in the future. Thus, to meet the military requirement for confidentiality and authentication, an IPng candidate must be capable of operating in a secure manner when necessary, but also allow for efficient operation on low-throughput RF links when other security mechanisms are already in place. In either of these cases, key management is extremely important. Ideally, a common key management system could be used to provide key distribution for security mechanisms at any layer from the application to the link layer. As a result, it is anticipated, however, that key distribution is a function of management, and should not dependent upon a particular IPng protocol format.Mobility The definition of most tactical systems include mobility in some form. Many tactical RF network designs provide means for members to join and leave particular RF subnets as their position changes. For example, as a platform moves out of the RF line-of-sight (LOS) range, it may switch from a typical LOS RF media such as the ultra-high frequency (UHF) band to a long-haul RF media such as high frequency (HF) or satellite communication (SATCOM). In some cases, such as the D/V ATD network, the RF subnet will perform its own routing and management of this dynamic topology. This will be invisible to the internet protocol except for (hopefully) subtle changes to some routing metrics (e.g., more or less delay to reach a host). In this instance, the RF subnetwork protocols serve as a buffer to the internet routing protocols and IPng will not need to be too concerned with mobility.Adamson [Page 4]RFC 1677 IPng Tactical RF Requirements August 1994 In other cases, however, the platform may make a dramatic change in position and require a major change in internet routing. IPng must be able to support this situation. It is recognized that an internet protocol may not be able to cope with large, rapid changes in topology. Efforts will be made to minimize the frequency of this in a tactical RF communication architecture, but there are instances when a major change in topology is required. Furthermore, it should be realized that mobility in the tactical setting is not limited to individual nodes moving about, but that, in some cases, entire subnetworks may be moving. An example of this is a Navy ship with multiple LANs on board, moving through the domains of different RF networks. In some cases, the RF subnet will be moving, as in the case of an aircraft strike force, or Navy battlegroup.Flows and Resource Reservation The tactical military has very real requirements for multi-media services across its shared and inter-connected RF networks. This includes applications from digital secure voice integrated with applications such as "white boards" and position reporting for mission planning purposes to low-latency, high priority tactical data messages (target detection, identification, location and heading
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -