📄 rfc1477.txt
字号:
Network Working Group M. SteenstrupRequest for Comments: 1477 BBN Systems and Technologies July 1993 IDPR as a Proposed StandardStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard. Distribution of this memo is unlimited.1. Introduction This document contains a discussion of inter-domain policy routing (IDPR), including an overview of functionality and a discussion of experiments. The objective of IDPR is to construct and maintain routes between source and destination administrative domains, that provide user traffic with the services requested within the constraints stipulated for the domains transited. Four documents describe IDPR in detail: M. Steenstrup. An architecture for inter-domain policy routing. RFC 1478. July 1993. M. Steenstrup. Inter-domain policy routing protocol specification: version 1. RFC 1479. July 1993. H. Bowns and M. Steenstrup. Inter-domain policy routing configuration and usage. Work in Progress. July 1991. R. Woodburn. Definitions of managed objects for inter-domain policy routing (version 1). Work in Progress. March 1993. This is a product of the Inter-Domain Policy Routing Working Group of the Internet Engineering Task Force (IETF).2. The Internet Environment As data communications technologies evolve and user populations grow, the demand for internetworking increases. The Internet currently comprises over 7000 operational networks and over 10,000 registered networks. In fact, for the last several years, the number of constituent networks has approximately doubled annually. Although we do not expect the Internet to sustain this growth rate, we must prepare for the Internet of five to ten years in the future.Steenstrup [Page 1]RFC 1477 IDPR July 1993 Internet connectivity has increased along with the number of component networks. Internetworks proliferate through interconnection of autonomous, heterogeneous networks administered by separate authorities. We use the term "administrative domain" (AD) to refer to any collection of contiguous networks, gateways, links, and hosts governed by a single administrative authority that selects the intra-domain routing procedures and addressing schemes, specifies service restrictions for transit traffic, and defines service requirements for locally-generated traffic. In the early 1980s, the Internet was purely hierarchical, with the ARPANET as the single backbone. The current Internet possesses a semblance of a hierarchy in the collection of backbone, regional, metropolitan, and campus domains that compose it. However, technological, economical, and political incentives have prompted the introduction of inter-domain links outside of those in the strict hierarchy. Hence, the Internet has the properties of both hierarchical and mesh connectivity. We expect that, over the next five years, the Internet will grow to contain O(10) backbone domains, most providing connectivity between many source and destination domains and offering a wide range of qualities of service, for a fee. Most domains will connect directly or indirectly to at least one Internet backbone domain, in order to communicate with other domains. In addition, some domains may install direct links to their most favored destinations. Domains at the lower levels of the hierarchy will provide some transit service, limited to traffic between selected sources and destinations. However, the majority of Internet domains will be "stubs", that is, domains that do not provide any transit service for any other domains but that connect directly to one or more transit domains. The bulk of Internet traffic will be generated by hosts in the stub domains, and thus, the applications running in these hosts will determine the traffic service requirements. We expect application diversity encompassing electronic mail, desktop videoconferencing, scientific visualization, and distributed simulation, for example. Many of these applications have strict requirements on loss, delay, and throughput. In such a large and heterogeneous Internet, the routing procedures must be capable of ensuring that traffic is forwarded along routes that offer the required services without violating domain usage restrictions. We believe that IDPR meets this goal; it has been designed to accommodate an Internet comprising O(10,000) administrative domains with diverse service offerings and requirements.Steenstrup [Page 2]RFC 1477 IDPR July 19933. An Overview of IDPR IDPR generates, establishes, and maintains "policy routes" that satisfy the service requirements of the users and respect the service restrictions of the transit domains. Policy routes are constructed using information about the services offered by and the connectivity between administrative domains and information about the services requested by the users.3.1 Policies With IDPR, each domain administrator sets "transit policies" that dictate how and by whom the resources in its domain should be used. Transit policies are usually public, and they specify offered services comprising: - Access restrictions: e.g., applied to traffic to or from certain domains or classes of users. - Quality: e.g., delay, throughput, or error characteristics. - Monetary cost: e.g., charge per byte, message, or session time. Each domain administrator also sets "source policies" for traffic originating in its domain. Source policies are usually private, and they specify requested services comprising: - Access: e.g., domains to favor or avoid in routes. - Quality: e.g., acceptable delay, throughput, and reliability. - Monetary cost: e.g., acceptable cost per byte, message, or session time.3.2 Functions The basic IDPR functions include: - Collecting and distributing routing information, i.e., domain transit policy and connectivity information. IDPR uses link state routing information distribution, so that each source domain may obtain routing information about all other domains. - Generating and selecting policy routes based on the routing information distributed and on source policy information. IDPR gives each source domain complete control over the routes it generates.Steenstrup [Page 3]RFC 1477 IDPR July 1993 - Setting up paths across the Internet, using the policy routes generated. - Forwarding messages across and between administrative domains along the established paths. IDPR uses source-specified message forwarding, giving each source domain complete control over the paths traversed by its hosts' inter-domain traffic. - Maintaining databases of routing information, inter-domain policy routes, forwarding information, and configuration information.3.3 Entities Several different entities are responsible for performing the IDPR functions: - "Policy gateways", the only IDPR-recognized connecting points between adjacent domains, collect and distribute routing information, participate in path setup, maintain forwarding information databases, and forward data messages along established paths. - "Path agents", resident within policy gateways, act on behalf of hosts to select policy routes, to set up and manage paths, and to maintain forwarding information databases. Any Internet host can reap the benefits of IDPR, as long as there exists a path agent willing to act on its behalf and a means by which the host's messages can reach that path agent. - Special-purpose servers maintain all other IDPR databases as follows: o Each "route server" is responsible for both its database of routing information, including domain connectivity and transit policy information, and its database of policy routes. Also, each route server generates policy routes on behalf of its domain, using entries from its routing information database and using source policy information supplied through configuration or obtained directly from the path agents. A route server may reside within a policy gateway, or it may exist as an autonomous entity. Separating the route server functions from the policy gateways frees the policy gateways from both the memory intensive task of routing information database and route database maintenance and the computationally intensive task of route generation. o Each "mapping server" is responsible for its database of mappings that resolve Internet names and addresses toSteenstrup [Page 4]RFC 1477 IDPR July 1993 administrative domains. The mapping server function can be easily integrated into an existing name service such as the DNS. o Each "configuration server" is responsible for its database of configured information that applies to policy gateways, path agents, and route servers in the given administrative domain. Configuration information for a given domain includes source and transit policies and mappings between local IDPR entities and their addresses. The configuration server function can be easily integrated into a domain's existing network management system.3.4 Message Handling
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -