📄 rfc2843.txt
字号:
specific AESA and membership scope in the PNNI hierarchy. As the default scope, implementations should choose the local scope of the PNNI peer group. In this way, manual configuration can be avoided unless information has to cross PNNI peer group boundaries. PNNI is responsible for the correct flooding either in the local peer group or across the hierarchy. The registration protocol is aligned with the standard initial topology database exchange protocol used in link-state routing protocols as far as possible. It uses a window size of one. A single information element is registered at a time and must be acknowledged before a new registration packet can be sent. The protocol uses ' initialization' and 'more' bits in the same manner PNNI and OSPF do. Any registration on a link unconditionally overwrites all registration data previously received on the same link. By means of a return code the server indicates to the client whether the registration was successful. Apart form the IP-related information, the protocol also offers a generic interface to the PNNI flooding. By means of so-called System Capabilities Information Groups other information can be distributed that can be used for proprietary or experimental implementations.Droz & Przygienda Informational [Page 7]RFC 2843 Proxy-PAR May 20003.2.2 Query Protocol The client uses the query protocol to obtain information about services registered by other clients. The client requests services registered within a specific membership scope, VPN and IP address prefix. It is always the client's task to request information, the server never makes an attempt to push information to the client. If the client needs to filter the returned data based on service- specific information, such as BGP AS, it must parse and interpret the received information. The server never looks beyond the IP scope. The more generic interface to the flooding is supported in a similar manner as the registration protocol.4 Supported Protocols Currently the protocols indicated in Table 2 have been included. Furthermore, for protocols marked 'yes', additional information has been specified that is beneficial for their operation. Many of the protocols do not need additional information; it is sufficient to know they are supported and to which addresses they are bound. To include other information in an experimental manner the generic information element can be used to carry such information.5 VPN Support To implement virtual private networks all information distributed via PAR can be scoped under a VPN ID [1]. Based on this ID, individual VPNs can be separated. Inside a certain VPN further distinctions can be made according to IP-address-related information and/or protocol type. In most cases the best VPN support can be provided when Proxy-PAR is used between the client and server because in this way it is possible to hide the real PNNI topology from the client. The PAR capable server translates from the abstract membership scope into the real PNNI routing level. In this way the real PNNI topology is hidden from the client and the server can apply restrictions in the PNNI scope. The server can for instance have a mapping such that the membership scope "global" is mapped to the highest level peer group to which a particular VPN has access. Thus the membership scopes can be seen as hierarchical structuring inside a certain VPN. With such mappings a network provider can also change the mapping without having to reconfigure the clients.Droz & Przygienda Informational [Page 8]RFC 2843 Proxy-PAR May 2000 For more secure VPN implementations it will also be necessary to implement VPN ID filters on the server side. In this way a client can be restricted to a certain set (typically one) of VPN IDs. The server will then allow queries and registrations only from the clients that are in the allowed VPNs. In this way it is possible to avoid an attached client from finding devices that are outside of its own VPN. There is even room for further restriction in terms of not allowing wildcard queries by a client. In terms of security, some of the protocols have their own methods, so PAR is only used for the discovery of the counterparts. For instance OSPF has an authentication that can be used during the OSPF operation. Hence even in the case where two wrong partners find each other, they will not communicate because they will not be able to authenticate each other. Protocol Additional Info ------------------------------- OSPF yes RIP RIPv2 BGP3 BGP4 yes EGP IDPR MOSPF yes DVMRP CBT PIM-SM IGRP IS-IS ES-IS ICMP GGP BBN SPF IGP PIM-DM MARS NHRP ATMARP DHCP DNS yes Table 2: Additional protocol information carried in PAR and PPAR. The VPN ID used by PAR and Proxy-PAR is aligned with the VPN ID used by other protocols from the ATM Forum and IETF. The VPN ID is structured into two parts, namely the 3-byte-long OUI plus a 4-byte index.Droz & Przygienda Informational [Page 9]RFC 2843 Proxy-PAR May 20006 Interoperation with ILMI based Server Discovery PAR can be used to complement the server discovery via ILMI as specified in [11,12,13]. It can be used to provide the flooding of information across the PNNI network. For this purpose a server has to register with a PAR-capable device. This can be achieved via Proxy- PAR or a direct PAR interaction. Manual configuration would also be possible. For instance the ATMARP server could register its service via Proxy-PAR. A direct interaction with PAR will be required in order to provide an appropriate flooding scope. A PAR-capable device that has the additional MIB variables in the Service Registry MIB can set these variables when getting information via PAR. All required information is either contained in PAR or is static, such as the IP version.7 Security Consideration The Proxy-PAR protocol itself does not have its own security concepts. As PAR is an extension of PNNI, it has all the security features that come with PNNI. In addition, the protocol is mainly used for automatic discovery of peers for certain protocols. After the discovery process the security concepts of the individual protocol are used for the bring-up. As explained in the section about VPN support, the only security considerations are on the server side, where access filters for VPN IDs can be implemented and restrictive membership scope mappings can be configured.8 Conclusion This document describes the basic functions of Proxy-PAR, which has been specified within the ATM Forum body. The main purpose of the protocol is to provide automatic detection and configuration of non- ATM devices over an ATM cloud. In the future, support for further protocols and address families may be added to widen the scope of applicability of Proxy-PAR.Droz & Przygienda Informational [Page 10]RFC 2843 Proxy-PAR May 20009 Bibliography [1] Fox, B. and B. Gleeson, "Virtual Private Networks Identifier", RFC 2685, September 1999. [2] ATM-Forum, "Private Network-Network Interface Specification Version 1.0." ATM Forum af-pnni-0055.000, March 1996. [3] ATM-Forum, "PNNI Augmented Routing (PAR) Version 1.0." ATM Forum af-ra-0104.000, January 1999. [4] ATM-Forum, "Interim Local Management Interface, (ILMI) Specification 4.0." ATM Forum af-ilmi-0065.000, September 1996. [5] Laubach, J., "Classical IP and ARP over ATM", RFC 2225, April 1998. [6] Moy, J., "Extending OSPF to Support Demand Circuits", RFC 1793, April 1995. [7] ATM-Forum, "LAN Emulation over ATM 1.0." ATM Forum af-lane- 0021.000, January 1995. [8] Armitage, G., "Support for Multicast over UNI 3.0/3.1 based ATM Networks", RFC 2022, November 1996. [9] Droz, P., Haas, R. and T. Przygienda, "OSPF over ATM and Proxy PAR", RFC 2844, May 2000. [10] Coltun, R., "The OSPF Opaque LSA Option", RFC 2328, July 1998. [11] Davison, M., "ILMI-Based Server Discovery for ATMARP", RFC 2601, June 1999. [12] Davison, M., "ILMI-Based Server Discovery for MARS", RFC 2602, June 1999. [13] Davison, M., "ILMI-Based Server Discovery for NHRP", RFC 2603, June 1999.Droz & Przygienda Informational [Page 11]RFC 2843 Proxy-PAR May 2000Authors' Addresses Patrick Droz IBM Research Zurich Research Laboratory Saumerstrasse 4 8803 Ruschlikon Switzerland EMail: dro@zurich.ibm.com Tony Przygienda Siara Systems Incorporated 1195 Borregas Avenue Sunnyvale, CA 94089 USA EMail: prz@siara.comDroz & Przygienda Informational [Page 12]RFC 2843 Proxy-PAR May 2000Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Droz & Przygienda Informational [Page 13]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -