⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc1245.ps

📁 著名的RFC文档,其中有一些文档是已经翻译成中文的的.
💻 PS
📖 第 1 页 / 共 5 页
字号:
(oadcast multi-access network support.) 122.63 676 T0 F( OSPF treats these networks \050e.g., X.25 ) 318.51 676 T-0.01 (PDNs\051 pretty much as if they were LANs \050i.e., a DR is elected, and a network LSA is gener-) 85.54 662 P-0.29 (ated\051. Additional con\336guration information is needed however for routers attached to these net-) 85.54 648 P(work to initially \336nd each other) 85.54 634 T(.) 236.45 634 T(\245) 72 614 T4 F(OSPF ar) 85.54 614 T(eas) 130.29 614 T0 F(. OSPF allows the Autonomous Systems to be broken up into regions call areas. ) 146.28 614 T(This is useful for several reasons. First, it provides an extra level of ) 85.54 600 T4 F(r) 411.64 600 T(outing pr) 416.75 600 T(otection) 464.18 600 T0 F(: rout-) 504.81 600 T-0.29 (ing within an area is protected from all information external to the area. Second, by splitting an ) 85.54 586 P-0.3 (Autonomous System into areas the ) 85.54 572 P4 F-0.3 (cost of the Dijkstra pr) 254.27 572 P-0.3 (ocedur) 365.44 572 P-0.3 (e ) 400.53 572 P0 F-0.3 (\050in terms of CPU cycles\051 is ) 408.55 572 P(reduced.) 85.54 558 T(\245) 72 538 T4 F(Flexible import of external r) 85.54 538 T(outing information.) 230.55 538 T0 F( In OSPF) 330.5 538 T(, ) 374.19 538 T4 F(each external r) 380.19 538 T(oute) 456.58 538 T0 F( is imported ) 478.56 538 T(into the Autonomous System in ) 85.54 524 T4 F(a separate LSA) 240.47 524 T0 F(. This reduces the amount of \337ooding traf) 319.08 524 T(\336c ) 518.07 524 T(\050since external routes change often, and you want to only \337ood the changes\051. It also enables ) 85.54 510 T4 F-0.43 (partial r) 85.54 496 P-0.43 (outing table updates) 127.86 496 P0 F-0.43 ( when only a single external route changes. OSPF external LSAs ) 230.96 496 P(also provide the following features. A ) 85.54 482 T4 F(forwarding addr) 270.4 482 T(ess) 355.81 482 T0 F( can be included in the external ) 370.46 482 T(LSA, eliminating extra-hops at the edge of the Autonomous System. There are two levels of ) 85.54 468 T(external metrics that can be speci\336ed, ) 85.54 454 T4 F(type 1) 269.06 454 T0 F( and ) 300.04 454 T4 F(type 2) 323.35 454 T0 F(. Also, external routes can be tagged ) 354.33 454 T(with a 32-bit number \050the ) 85.54 440 T4 F(external r) 211.12 440 T(oute tag) 261.19 440 T0 F(; commonly used as an AS number of the route\325) 302.16 440 T(s ) 531.68 440 T(origin\051, simplifying external route management in a transit Autonomous System.) 85.54 426 T(\245) 72 406 T4 F(Four level r) 85.54 406 T(outing hierar) 145.27 406 T(chy) 212.69 406 T0 F(. OSPF has a four level routing hierarchy) 229.9 406 T(, or trust model: ) 426.32 406 T4 F(intra-) 505.94 406 T(ar) 85.54 392 T(ea) 96.64 392 T0 F(, ) 107.96 392 T4 F(inter) 113.96 392 T(-ar) 138.16 392 T(ea) 153.26 392 T0 F(, ) 164.59 392 T4 F(external type 1) 170.58 392 T0 F( and ) 246.52 392 T4 F(external type 2) 269.84 392 T0 F( routes. This enables multiple levels of ) 345.78 392 T(routing protection, and simpli\336es routing management in an Autonomous System.) 85.54 378 T(\245) 72 358 T4 F(V) 85.54 358 T(irtual links) 93.75 358 T0 F(. By allowing the con\336guration of virtual links, OSPF ) 150.07 358 T4 F(r) 410.94 358 T(emoves topological ) 416.05 358 T(r) 85.54 344 T(estrictions) 90.64 344 T0 F( on area layout in an Autonomous System.) 143.27 344 T(\245) 72 324 T4 F-0.32 (Authentication of r) 85.54 324 P-0.32 (outing pr) 182.62 324 P-0.32 (otocol exchanges) 229.74 324 P0 F-0.32 (. Every time an OSPF router receives a routing ) 315.03 324 P(protocol packet, it authenticates the packet before processing it further) 85.54 310 T(.) 422.61 310 T(\245) 72 290 T4 F-0.03 (Flexible r) 85.54 290 P-0.03 (outing metric.) 134.26 290 P0 F-0.03 ( In OSPF) 206.18 290 P-0.03 (, metric are assigned to outbound router interfaces. The cost ) 249.82 290 P(of a path is then the sum of the path\325) 85.54 276 T(s component interfaces. The routing metric itself can be ) 260.42 276 T(assigned by the system administrator to indicate any combination of network characteristics ) 85.54 262 T(\050e.g., delay) 85.54 248 T(, bandwidth, dollar cost, etc.\051.) 138.04 248 T(\245) 72 228 T4 F-0.09 (Equal-cost multipath.) 85.54 228 P0 F-0.09 ( When multiple best cost routes to a destination exist, OSPF \336nds them ) 196.73 228 P(and they can be then used to load share traf) 85.54 214 T(\336c to the destination.) 292.82 214 T(\245) 72 194 T4 F(T) 85.54 194 T(OS-based r) 93.32 194 T(outing.) 150.74 194 T0 F( Separate sets of routes can be calculated for each IP type of service. For ) 186.4 194 T(example, low delay traf) 85.54 180 T(\336c could be routed on one path, while high bandwidth traf) 198.56 180 T(\336c is routed ) 477.16 180 T-0.39 (on another) 85.54 166 P-0.39 (. This is done by \050optionally\051 assigning, to each outgoing router interface, one metric ) 135.44 166 P(for each IP T) 85.54 152 T(OS.) 148.26 152 T(\245) 72 132 T4 F(V) 85.54 132 T(ariable-length subnet support.) 93.09 132 T0 F( OSPF includes support for variable-length subnet masks by ) 248.02 132 T(carrying a network mask with each advertised destination.) 85.54 118 TFMENDPAGE%%EndPage: "5" 6%%Page: "6" 6612 792 0 FMBEGINPAGE72 702 540 720 R7 X0 KV0 F0 X(RFC 1245) 72 712 T(OSPF protocol analysis) 249.36 712 T(July 1991) 493.02 712 T72 69.05 540 81 R7 XV0 X([Moy]) 72 73 T([Page 6]) 499.7 73 T72 108 540 684 R7 XV0 X(\245) 72 676 T4 F-0.08 (Stub ar) 85.54 676 P-0.08 (ea support. ) 123.56 676 P0 F-0.08 (T) 183.69 676 P-0.08 (o support routers having insuf) 190.18 676 P-0.08 (\336cient memory) 333.53 676 P-0.08 (, areas can be con\336gured as ) 405.63 676 P(stubs. External LSAs \050often making up the bulk of the Autonomous System\051 are not \337ooded ) 85.54 662 T(into/throughout stub areas. Routing to external destinations in stub areas is based solely on ) 85.54 648 T(default.) 85.54 634 TFMENDPAGE%%EndPage: "6" 7%%Page: "7" 7612 792 0 FMBEGINPAGE72 702 540 720 R7 X0 KV0 F0 X(RFC 1245) 72 712 T(OSPF protocol analysis) 249.36 712 T(July 1991) 493.02 712 T72 69.05 540 81 R7 XV0 X([Moy]) 72 73 T([Page 7]) 499.7 73 T72 108 540 684 R7 XV2 F0 X(3.0  Cost of the pr) 72 673.33 T(otocol) 193.4 673.33 T0 F-0.1 (This section attempts to analyze how the OSPF protocol will perform and scale in the Internet. In ) 72 646 P(this analysis, we will concentrate on the following four areas:) 72 632 T(\245) 72 612 T4 F(Link bandwidth) 85.54 612 T0 F(. In OSPF) 168.53 612 T(, a reliable \337ooding mechanism is used to ensure that router link ) 215.22 612 T(state databases are remained synchronized. Individual components of the link state databases ) 85.54 598 T-0.17 (\050the LSAs\051 are refreshed infrequently \050every 30 minutes\051, at least in the absence of topological ) 85.54 584 P(changes. Still, as the size of the database increases, the amount of link bandwidth used by the ) 85.54 570 T(\337ooding procedure also increases.) 85.54 556 T(\245) 72 536 T4 F-0.03 (Router memory) 85.54 536 P0 F-0.03 (. The size of an OSPF link state database can get quite lar) 166.32 536 P-0.03 (ge, especially in the ) 441.86 536 P(presence of many external LSAs. This imposes requirements on the amount of router memory ) 85.54 522 T(available.) 85.54 508 T(\245) 72 488 T4 F(CPU usage) 85.54 488 T0 F(. In OSPF) 141.83 488 T(, this is dominated by the length of time it takes to run the shortest path ) 188.52 488 T(calculation \050Dijkstra procedure\051. This is a function of the number of routers in the OSPF sys-) 85.54 474 T(tem.) 85.54 460 T(\245) 72 440 T4 F(Role of the Designated Router) 85.54 440 T(.) 238.32 440 T0 F( The Designated router receives and sends more packets on a ) 241.32 440 T-0.46 (multi-access networks than the other routers connected to the network. Also, there is some time ) 85.54 426 P(involved in cutting over to a new Designated Router after the old one fails \050especially when ) 85.54 412 T(both the Backup Designated Router and the Designated Router fail at the same time\051. For this ) 85.54 398 T-0.27 (reason, it is possible that you may want to limit the number of routers connected to a single net-) 85.54 384 P(work.) 85.54 370 T(The remaining section will analyze these areas, estimating how much resources the OSPF proto-) 72 344 T-0.05 (col will consume, both now and in the future. T) 72 330 P-0.05 (o aid in this analysis, the next section will present ) 298.93 330 P(some data that have been collected in actual OSPF \336eld deployments.) 72 316 T3 F(3.1   Operational data) 72 282.67 T0 F-0.44 (The OSPF protocol has been deployed in a number of places in the Internet. For a summary of this ) 72 256 P(deployment, see [1]. Some statistics have been gathered from this operational experience, via ) 72 242 T-0.03 (local network management facilities. Some of these statistics are presented in the following table:) 72 228 PFMENDPAGE%%EndPage: "7" 85 10 /Times-Bold FMDEFINEFONT%%Page: "8" 8612 792 0 FMBEGINPAGE72 702 540 720 R7 X0 KV0 F0 X(RFC 1245) 72 712 T(OSPF protocol analysis) 249.36 712 T(July 1991) 493.02 712 T72 69.05 540 81 R7 XV0 X([Moy]) 72 73 T([Page 8]) 499.7 73 T72 108 540 684 R7 XV72 666.01 540 674 C72 671.98 540 671.98 2 L0.5 H0 Z0 X0 KN0 0 612 792 C5 F0 X0 K(T) 72 677.33 T(ABLE 1. Pertinent operational statistics) 77.93 677.33 T(Statistic) 72 655.34 T(BARRNet) 216 655.34 T(NSI) 324 655.34 T(OARnet) 432 655.34 T1 F(Data gathering \050duration\051) 72 638.34 T(99 hours) 216 638.34 T(277 hours) 324 638.34 T(28 hours) 432 638.34 T(Dijkstra frequency) 72 622.34 T(50 minutes) 216 622.34 T(25 minutes) 324 622.34 T(13 minutes) 432 622.34 T(External incremental frequency) 72 606.34 T(1.2 minutes) 216 606.34 T(.98 minutes) 324 606.34 T(not gathered) 432 606.34 T(Database turnover) 72 590.34 T(29.7 minutes) 216 590.34 T(30.9 minutes) 324 590.34 T(28.2 minutes) 432 590.34 T(LSAs per packet) 72 574.34 T(3.38) 216 574.34 T(3.16) 324 574.34 T(2.99) 432 574.34 T(Flooding retransmits) 72 558.34 T(1.3%) 216 558.34 T(1.4%) 324 558.34 T(.7%) 432 558.34 T0 F(The \336rst line in the above table show the length of time that statistics were gathered on the three ) 72 533.01 T(networks. A brief description of the other statistics follows:) 72 519.01 T(\245) 72 499.01 T4 F(Dijkstra fr) 85.54 499.01 T(equency) 140.27 499.01 T(. ) 181.59 499.01 T0 F(In OSPF) 187.59 499.01 T(, the Dijkstra calculation involves only those routers and transit ) 228.28 499.01 T-0.14 (networks belonging to the AS. The Dijkstra is run only when something in the system changes ) 85.54 485.01 P(\050like a serial line between two routers goes down\051. Note that in these operational systems, the ) 85.54 471.01 T(Dijkstra process runs only infrequently \050the most frequent being every 13 minutes\051.) 85.54 457.01 T(\245) 72 437.01 T4 F(External incr) 85.54 437.01 T(emental fr) 153.61 437.01 T(equency) 206.35 437.01 T0 F(. In OSPF) 247.54 437.01 T(, when an external route changes only its entry in ) 294.23 437.01 T-0.13 (the routing table is recalculated. These are called external incremental updates. Note that these ) 85.54 423.01 P(happen much more frequently than the Dijkstra procedure. \050in other words, incremental ) 85.54 409.01 T(updates are saving quite a bit of processor time\051.) 85.54 395.01 T(\245) 72 375.01 T4 F-0.45 (Database turnover) 85.54 375.01 P-0.45 (.) 179.58 375.01 P0 F-0.45 ( In OSPF) 182.58 375.01 P-0.45 (, link state advertisements are refreshed at a minimum of every 30 ) 225.36 375.01 P(minutes. New advertisement instances are sent out more frequently when some part of the ) 85.54 361.01 T-0.2 (topology changes. The table shows that, even taking topological changes into account, on aver-) 85.54 347.01 P(age an advertisement is updated close to only every 30 minutes. This statistic will be used in ) 85.54 333.01 T(the link bandwidth calculations below) 85.54 319.01 T(. Note that NSI actually shows advertisements updated ) 267.31 319.01 T(every 30.7 \050> 30\051 minutes. This probably means that at one time earlier in the measurement ) 85.54 305.01 T(period, NSI had a smaller link state database that it did at the end.) 85.54 291.01 T(\245) 72 271.01 T4 F-0.39 (LSAs per packet.) 85.54 271.01 P0 F-0.39 ( In OSPF) 173.04 271.01 P-0.39 (, multiple LSAs can be included in either Link State Update or Link ) 215.95 271.01 P-0.35 (State Acknowledgment packets.The table shows that, on average, around 3 LSAs are carried in ) 85.54 257.01 P(a single packet. This statistic is used when calculating the header overhead in the link band-) 85.54 243.01 T(width calculation below) 85.54 229.01 T(. This statistic was derived by diving the number of LSAs \337ooded by ) 200.01 229.01 T(the number of \050non-hello\051 multicasts sent.) 85.54 215.01 T(\245) 72 195.01 T4 F(Flooding r) 85.54 195.01 T(etransmits.) 138.97 195.01 T0 F( This counts both retransmission of LS Update packets and Link State ) 195.92 195.01 T(Acknowledgment packets, as a percentage of the original multicast \337ooded packets. The table ) 85.54 181.01 T(shows that \337ooding is working well, and that retransmits can be ignored in the link bandwidth ) 85.54 167.01 T(calculation below) 85.54 153.01 T(.) 169.69 153.01 TFMENDPAGE%%EndPage: "8" 9%%Page: "9" 9612 792 0 FMBEGINPAGE72 702 540 720 R7 X0 KV0 F0 X(RFC 1245) 72 712 T(OSPF protocol analysis) 249.36 712 T(July 1991) 493.02 712 T72 69.05 540 81 R

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -