📄 rfc2461.txt
字号:
packet - an IP header plus payload. link MTU - the maximum transmission unit, i.e., maximum packet size in octets, that can be conveyed in one piece over a link. target - an address about which address resolution information is sought, or an address which is the new first-hop when being redirected. proxy - a router that responds to Neighbor Discovery query messages on behalf of another node. A router acting on behalf of a mobile node that has moved off-link could potentially act as a proxy for the mobile node. ICMP destination unreachable indication - an error indication returned to the original sender of a packet that cannot be delivered for the reasons outlined in [ICMPv6]. If the error occurs on a node other than the node originating the packet, an ICMP error message is generated. If the error occurs on the originating node, an implementation is not required to actually create and send an ICMP error packet to the source, as long as the upper-layer sender is notified through an appropriate mechanism (e.g., return value from a procedure call). Note, however, that an implementation may find it convenient in some cases to return errors to the sender by taking the offending packet, generating an ICMP error message, and then delivering it (locally) through the generic error handling routines.Narten, et. al. Standards Track [Page 6]RFC 2461 Neighbor Discovery for IPv6 December 1998 random delay - when sending out messages, it is sometimes necessary to delay a transmission for a random amount of time in order to prevent multiple nodes from transmitting at exactly the same time, or to prevent long-range periodic transmissions from synchronizing with each other [SYNC]. When a random component is required, a node calculates the actual delay in such a way that the computed delay forms a uniformly-distributed random value that falls between the specified minimum and maximum delay times. The implementor must take care to insure that the granularity of the calculated random component and the resolution of the timer used are both high enough to insure that the probability of multiple nodes delaying the same amount of time is small. random delay seed - If a pseudo-random number generator is used in calculating a random delay component, the generator should be initialized with a unique seed prior to being used. Note that it is not sufficient to use the interface token alone as the seed, since interface tokens will not always be unique. To reduce the probability that duplicate interface tokens cause the same seed to be used, the seed should be calculated from a variety of input sources (e.g., machine components) that are likely to be different even on identical "boxes". For example, the seed could be formed by combining the CPU's serial number with an interface token.2.2. Link Types Different link layers have different properties. The ones of concern to Neighbor Discovery are: multicast - a link that supports a native mechanism at the link layer for sending packets to all (i.e., broadcast) or a subset of all neighbors. point-to-point - a link that connects exactly two interfaces. A point-to-point link is assumed to have multicast capability and have a link-local address. non-broadcast multi-access (NBMA) - a link to which more than two interfaces can attach, but that does not support a native form of multicast or broadcast (e.g., X.25, ATM, frame relay, etc.).Narten, et. al. Standards Track [Page 7]RFC 2461 Neighbor Discovery for IPv6 December 1998 Note that all link types (including NBMA) are expected to provide multicast service for IP (e.g., using multicast servers), but it is an issue for further study whether ND should use such facilities or an alternate mechanism that provides the equivalent ND services. shared media - a link that allows direct communication among a number of nodes, but attached nodes are configured in such a way that they do not have complete prefix information for all on-link destinations. That is, at the IP level, nodes on the same link may not know that they are neighbors; by default, they communicate through a router. Examples are large (switched) public data networks such as SMDS and B- ISDN. Also known as "large clouds". See [SH- MEDIA]. variable MTU - a link that does not have a well-defined MTU (e.g., IEEE 802.5 token rings). Many links (e.g., Ethernet) have a standard MTU defined by the link- layer protocol or by the specific document describing how to run IP over the link layer. asymmetric reachability - a link where non-reflexive and/or non-transitive reachability is part of normal operation. (Non- reflexive reachability means packets from A reach B but packets from B don't reach A. Non-transitive reachability means packets from A reach B, and packets from B reach C, but packets from A don't reach C.) Many radio links exhibit these properties.2.3. Addresses Neighbor Discovery makes use of a number of different addresses defined in [ADDR-ARCH], including: all-nodes multicast address - the link-local scope address to reach all nodes. FF02::1 all-routers multicast address - the link-local scope address to reach all routers. FF02::2Narten, et. al. Standards Track [Page 8]RFC 2461 Neighbor Discovery for IPv6 December 1998 solicited-node multicast address - a link-local scope multicast address that is computed as a function of the solicited target's address. The function is described in [ADDR-ARCH]. The function is chosen so that IP addresses which differ only in the high-order bits, e.g., due to multiple high-order prefixes associated with different providers, will map to the same solicited-node address thereby reducing the number of multicast addresses a node must join. link-local address - a unicast address having link-only scope that can be used to reach neighbors. All interfaces on routers MUST have a link-local address. Also, [ADDRCONF] requires that interfaces on hosts have a link-local address. unspecified address - a reserved address value that indicates the lack of an address (e.g., the address is unknown). It is never used as a destination address, but may be used as a source address if the sender does not (yet) know its own address (e.g., while verifying an address is unused during address autoconfiguration [ADDRCONF]). The unspecified address has a value of 0:0:0:0:0:0:0:0.2.4. Requirements The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [KEYWORDS]. This document also makes use of internal conceptual variables to describe protocol behavior and external variables that an implementation must allow system administrators to change. The specific variable names, how their values change, and how their settings influence protocol behavior are provided to demonstrate protocol behavior. An implementation is not required to have them in the exact form described here, so long as its external behavior is consistent with that described in this document.3. PROTOCOL OVERVIEW This protocol solves a set of problems related to the interaction between nodes attached to the same link. It defines mechanisms for solving each of the following problems:Narten, et. al. Standards Track [Page 9]RFC 2461 Neighbor Discovery for IPv6 December 1998 Router Discovery: How hosts locate routers that reside on an attached link. Prefix Discovery: How hosts discover the set of address prefixes that define which destinations are on-link for an attached link. (Nodes use prefixes to distinguish destinations that reside on-link from those only reachable through a router.) Parameter Discovery: How a node learns such link parameters as the link MTU or such Internet parameters as the hop limit value to place in outgoing packets. Address Autoconfiguration: How nodes automatically configure an address for an interface. Address resolution: How nodes determine the link-layer address of an on-link destination (e.g., a neighbor) given only the destination's IP address. Next-hop determination: The algorithm for mapping an IP destination address into the IP address of the neighbor to which traffic for the destination should be sent. The next- hop can be a router or the destination itself. Neighbor Unreachability Detection: How nodes determine that a neighbor is no longer reachable. For neighbors used as routers, alternate default routers can be tried. For both routers and hosts, address resolution can be performed again. Duplicate Address Detection: How a node determines that an address it wishes to use is not already in use by another node. Redirect: How a router informs a host of a better first-hop node to reach a particular destination. Neighbor Discovery defines five different ICMP packet types: A pair of Router Solicitation and Router Advertisement messages, a pair of Neighbor Solicitation and Neighbor Advertisements messages, and a Redirect message. The messages serve the following purpose: Router Solicitation: When an interface becomes enabled, hosts may send out Router Solicitations that request routers to generate Router Advertisements immediately rather than at their next scheduled time.Narten, et. al. Standards Track [Page 10]RFC 2461 Neighbor Discovery for IPv6 December 1998 Router Advertisement: Routers advertise their presence together with various link and Internet parameters either periodically, or in response to a Router Solicitation message. Router Advertisements contain prefixes that are used for on-link determination and/or address configuration, a suggested hop limit value, etc. Neighbor Solicitation: Sent by a node to determine the link-layer address of a neighbor, or to verify that a neighbor is still reachable via a cached link-layer address. Neighbor Solicitations are also used for Duplicate Address Detection. Neighbor Advertisement: A response to a Neighbor Solicitation message. A node may also send unsolicited Neighbor Advertisements to announce a link-layer address change. Redirect: Used by routers to inform hosts of a better first hop for a destination. On multicast-capable links, each router periodically multicasts a Router Advertisement packet announcing its availability. A host receives Router Advertisements from all routers, building a list of default routers. Routers generate Router Advertisements frequently enough that hosts will learn of their presence within a few minutes, but not frequently enough to rely on an absence of advertisements to detect router failure; a separate Neighbor Unreachability Detection algorithm provides failure detection. Router Advertisements contain a list of prefixes used for on-link determination and/or autonomous address configuration; flags associated with the prefixes specify the intended uses of a
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -